Spaces:
Paused
Paused
| import json | |
| import random | |
| import torch | |
| from typing import Any | |
| from typing import Optional | |
| from fastapi import FastAPI | |
| from pydantic import BaseModel | |
| from vllm import LLM, SamplingParams, RequestOutput | |
| # Don't forget to set HF_TOKEN in the env during running | |
| cuda_num_device: int = 0 | |
| if torch.cuda.is_available() == 'cuda': | |
| random_seed = 42 | |
| random.seed(random_seed) | |
| device = torch.device('cuda') | |
| torch.cuda.manual_seed(random_seed) | |
| print(f"Using device: {device}") | |
| print(f"CUDA available and enabled. {torch.cuda}") | |
| print(f"CUDA is available: {torch.cuda.is_available()}") | |
| print(f"CUDA device count: {torch.cuda.device_count()}") | |
| print(f"CUDA current device: {torch.cuda.current_device()}") | |
| for i in range(torch.cuda.device_count()): | |
| print('=================================================================') | |
| print(torch.cuda.get_device_name(i)) | |
| print('Memory Usage:') | |
| print('Allocated:', round(torch.cuda.memory_allocated(i) / 1024 ** 3, 1), 'GB') | |
| print('Cached: ', round(torch.cuda.memory_reserved(i) / 1024 ** 3, 1), 'GB') | |
| app = FastAPI() | |
| # Initialize the LLM engine | |
| # Replace 'your-model-path' with the actual path or name of your model | |
| # example: | |
| # https://huggingface.co/spaces/damienbenveniste/deploy_vLLM/blob/b210a934d4ff7b68254d42fa28736d74649e610d/app.py#L17-L20 | |
| engine_llama_3_2: LLM = LLM( | |
| model='meta-llama/Llama-3.2-3B-Instruct', | |
| revision="0cb88a4f764b7a12671c53f0838cd831a0843b95", | |
| # https://github.com/vllm-project/vllm/blob/v0.6.4/vllm/config.py#L1062-L1065 | |
| max_num_batched_tokens=32768, # Reduced for T4, must equal with max_model_len | |
| max_num_seqs=16, # Reduced for T4 | |
| gpu_memory_utilization=0.85, # Slightly increased, adjust if needed | |
| tensor_parallel_size=1, | |
| # Llama-3.2-3B-Instruct max context length is 131072, but we reduce it to 32k. | |
| # 32k tokens, 3/4 of 32k is 24k words, each page average is 500 or 0.5k words, | |
| # so that's basically 24k / .5k = 24 x 2 =~48 pages. | |
| # Because when we use maximum token length, it will be slower and the memory is not enough for T4. | |
| # https://github.com/vllm-project/vllm/blob/v0.6.4/vllm/config.py#L85-L86 | |
| # https://github.com/vllm-project/vllm/blob/v0.6.4/vllm/config.py#L98-L102 | |
| # [rank0]: raise ValueError( | |
| # [rank0]: ValueError: The model's max seq len (131072) | |
| # is larger than the maximum number of tokens that can be stored in KV cache (57056). | |
| # Try increasing `gpu_memory_utilization` or decreasing `max_model_len` when initializing the engine. | |
| max_model_len=32768, # Reduced for T4 | |
| enforce_eager=True, # Disable CUDA graph | |
| # File "/home/user/.local/lib/python3.12/site-packages/vllm/worker/worker.py", | |
| # line 479, in _check_if_gpu_supports_dtype | |
| # Bfloat16 is only supported on GPUs with compute capability of at least 8.0. | |
| # Your Tesla T4 GPU has compute capability 7.5. | |
| # You can use float16 instead by explicitly setting the`dtype` flag in CLI, for example: --dtype=half. | |
| dtype='half', # Use 'half' for T4 | |
| ) | |
| # # ValueError: max_num_batched_tokens (512) is smaller than max_model_len (32768). | |
| # # This effectively limits the maximum sequence length to max_num_batched_tokens and makes vLLM reject longer sequences. | |
| # # Please increase max_num_batched_tokens or decrease max_model_len. | |
| # engine_sailor_chat: LLM = LLM( | |
| # model='sail/Sailor-4B-Chat', | |
| # revision="89a866a7041e6ec023dd462adeca8e28dd53c83e", | |
| # max_num_batched_tokens=32768, # Reduced for T4 | |
| # max_num_seqs=16, # Reduced for T4 | |
| # gpu_memory_utilization=0.85, # Slightly increased, adjust if needed | |
| # tensor_parallel_size=1, | |
| # max_model_len=32768, | |
| # enforce_eager=True, # Disable CUDA graph | |
| # dtype='half', # Use 'half' for T4 | |
| # ) | |
| def greet_json(): | |
| cuda_info: dict[str, Any] = {} | |
| if torch.cuda.is_available(): | |
| cuda_current_device: int = torch.cuda.current_device() | |
| cuda_info = { | |
| "device_count": torch.cuda.device_count(), | |
| "cuda_device": torch.cuda.get_device_name(cuda_current_device), | |
| "cuda_capability": torch.cuda.get_device_capability(cuda_current_device), | |
| "allocated": f"{round(torch.cuda.memory_allocated(cuda_current_device) / 1024 ** 3, 1)} GB", | |
| "cached": f"{round(torch.cuda.memory_reserved(cuda_current_device) / 1024 ** 3, 1)} GB", | |
| } | |
| return { | |
| "message": f"CUDA availability is {torch.cuda.is_available()}", | |
| "cuda_info": cuda_info, | |
| "model": [ | |
| { | |
| "name": "meta-llama/Llama-3.2-3B-Instruct", | |
| "revision": "0cb88a4f764b7a12671c53f0838cd831a0843b95", | |
| "max_model_len": engine_llama_3_2.llm_engine.model_config.max_model_len, | |
| }, | |
| ] | |
| } | |
| class GenerationRequest(BaseModel): | |
| prompt: str | |
| max_tokens: int = 100 | |
| temperature: float = 0.7 | |
| logit_bias: Optional[dict[int, float]] = None | |
| class GenerationResponse(BaseModel): | |
| text: Optional[str] | |
| error: Optional[str] | |
| def generate_text(request: GenerationRequest) -> dict[str, Any]: | |
| try: | |
| sampling_params: SamplingParams = SamplingParams( | |
| temperature=request.temperature, | |
| max_tokens=request.max_tokens, | |
| logit_bias=request.logit_bias, | |
| ) | |
| # Generate text | |
| response: list[RequestOutput] = engine_llama_3_2.generate( | |
| prompts=request.prompt, | |
| sampling_params=sampling_params | |
| ) | |
| output: dict[str, Any] = {} | |
| for item in response: | |
| outputs: list[dict[str, Any]] = [] | |
| for out in item.outputs: | |
| outputs.append({ | |
| "text": out.text, | |
| }) | |
| output["output"] = outputs | |
| return { | |
| "output": output, | |
| } | |
| except Exception as e: | |
| return { | |
| "error": str(e) | |
| } | |
| # @app.post("/generate-sailor-chat") | |
| # def generate_text(request: GenerationRequest) -> list[RequestOutput] | dict[str, str]: | |
| # try: | |
| # sampling_params: SamplingParams = SamplingParams( | |
| # temperature=request.temperature, | |
| # max_tokens=request.max_tokens, | |
| # logit_bias=request.logit_bias, | |
| # ) | |
| # | |
| # # Generate text | |
| # return engine_sailor_chat.generate( | |
| # prompts=request.prompt, | |
| # sampling_params=sampling_params | |
| # ) | |
| # | |
| # except Exception as e: | |
| # return { | |
| # "error": str(e) | |
| # } | |
| # | |