Spaces:
Sleeping
Sleeping
File size: 9,375 Bytes
a608ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# 檔案路徑: app/services/integrated_food_analysis_service.py
import logging
import numpy as np
from PIL import Image
import io
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime
# 導入各個服務
from .ai_service import classify_food_image
from .reference_detection_service import detect_reference_objects_from_image
from .weight_calculation_service import calculate_food_weight
from .nutrition_api_service import fetch_nutrition_data
# 設置日誌
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class IntegratedFoodAnalysisService:
def __init__(self):
"""初始化整合食物分析服務"""
logger.info("初始化整合食物分析服務...")
def analyze_food_image(self, image_bytes: bytes, debug: bool = False) -> Dict[str, Any]:
"""
整合食物分析主函數
新架構流程:
1. FOOD101 模型判斷食物
2. YOLO 主要判斷參考物在哪、大小為何
3. 再利用 SAM+DPT 去計算可能的重量
4. 再利用重量去乘上 USDA 每100克的數值
Args:
image_bytes: 圖片二進位數據
debug: 是否啟用調試模式
Returns:
Dict: 完整的分析結果
"""
try:
logger.info("=== 開始整合食物分析 ===")
start_time = datetime.now()
# 將 bytes 轉換為 PIL Image
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
logger.info(f"圖片載入完成,尺寸: {image.size}")
# === 第一層:FOOD101 模型判斷食物 ===
logger.info("--- 第一層:FOOD101 食物識別 ---")
food_name = classify_food_image(image_bytes)
logger.info(f"FOOD101 識別結果: {food_name}")
if food_name.startswith("Error") or food_name == "Unknown":
return self._create_error_response("食物識別失敗", food_name)
# === 第二層:YOLO 判斷參考物 ===
logger.info("--- 第二層:YOLO 參考物偵測 ---")
reference_objects, pixel_ratio = detect_reference_objects_from_image(image_bytes)
if not reference_objects:
logger.warning("未偵測到參考物,使用預設像素比例")
pixel_ratio = 0.01 # 預設比例
best_reference = reference_objects[0] if reference_objects else None
logger.info(f"參考物偵測結果: {len(reference_objects)} 個參考物")
if best_reference:
logger.info(f"最佳參考物: {best_reference['label']}, 信心度: {best_reference['confidence']:.2f}")
logger.info(f"像素比例: {pixel_ratio:.4f} cm/pixel")
# === 第三層:SAM+DPT 重量計算 ===
logger.info("--- 第三層:SAM+DPT 重量計算 ---")
weight_result = calculate_food_weight(
image_bytes=image_bytes,
food_name=food_name,
pixel_ratio=pixel_ratio,
bbox=None # 使用整個圖片
)
if not weight_result.get("success", False):
logger.error("重量計算失敗")
return self._create_error_response("重量計算失敗", weight_result.get("error", "未知錯誤"))
estimated_weight = weight_result["estimated_weight"]
weight_confidence = weight_result["weight_confidence"]
weight_error_range = weight_result["weight_error_range"]
logger.info(f"重量計算結果: {estimated_weight}g, 信心度: {weight_confidence:.2f}")
# === 第四層:USDA API 營養查詢 ===
logger.info("--- 第四層:USDA API 營養查詢 ---")
nutrition_info = fetch_nutrition_data(food_name)
if nutrition_info is None:
logger.warning("USDA API 查詢失敗,使用預設營養值")
nutrition_info = self._get_default_nutrition(food_name)
# === 第五層:根據重量調整營養素 ===
logger.info("--- 第五層:重量調整營養素 ---")
weight_ratio = estimated_weight / 100 # 每100克的營養值
adjusted_nutrition = {}
for nutrient, value in nutrition_info.items():
if nutrient not in ["food_name", "chinese_name"]:
adjusted_nutrition[nutrient] = round(value * weight_ratio, 1)
logger.info(f"營養調整完成,重量比例: {weight_ratio:.2f}")
# === 生成分析報告 ===
analysis_time = (datetime.now() - start_time).total_seconds()
result = {
"success": True,
"analysis_time": round(analysis_time, 2),
"food_analysis": {
"food_name": food_name,
"recognition_method": "FOOD101",
"confidence": 0.95 # FOOD101 通常有很高的準確度
},
"reference_analysis": {
"detected_objects": reference_objects,
"best_reference": best_reference,
"pixel_ratio": pixel_ratio,
"detection_method": "YOLO"
},
"weight_analysis": {
"estimated_weight": estimated_weight,
"weight_confidence": weight_confidence,
"weight_error_range": weight_error_range,
"calculation_method": "SAM+DPT",
"reference_object": best_reference["label"] if best_reference else None
},
"nutrition_analysis": {
"base_nutrition": nutrition_info, # 每100克的營養值
"adjusted_nutrition": adjusted_nutrition, # 根據重量調整的營養值
"data_source": "USDA API",
"weight_ratio": weight_ratio
},
"summary": {
"total_calories": adjusted_nutrition.get("calories", 0),
"total_protein": adjusted_nutrition.get("protein", 0),
"total_carbs": adjusted_nutrition.get("carbs", 0),
"total_fat": adjusted_nutrition.get("fat", 0),
"health_score": self._calculate_health_score(adjusted_nutrition)
},
"architecture": {
"layer_1": "FOOD101 (食物識別)",
"layer_2": "YOLO (參考物偵測)",
"layer_3": "SAM+DPT (重量計算)",
"layer_4": "USDA API (營養查詢)",
"layer_5": "重量調整 (營養計算)"
}
}
logger.info("=== 整合食物分析完成 ===")
return result
except Exception as e:
logger.error(f"整合食物分析失敗: {str(e)}")
return self._create_error_response("整合分析失敗", str(e))
def _create_error_response(self, error_type: str, error_message: str) -> Dict[str, Any]:
"""創建錯誤回應"""
return {
"success": False,
"error_type": error_type,
"error_message": error_message,
"timestamp": datetime.now().isoformat()
}
def _get_default_nutrition(self, food_name: str) -> Dict[str, Any]:
"""取得預設營養值"""
default_nutrition = {
"food_name": food_name,
"calories": 100,
"protein": 5,
"fat": 2,
"carbs": 15,
"fiber": 2,
"sugar": 1,
"sodium": 200
}
return default_nutrition
def _calculate_health_score(self, nutrition: Dict[str, float]) -> int:
"""計算健康評分"""
score = 100
# 熱量評分
calories = nutrition.get("calories", 0)
if calories > 400:
score -= 20
elif calories > 300:
score -= 10
# 脂肪評分
fat = nutrition.get("fat", 0)
if fat > 20:
score -= 15
elif fat > 15:
score -= 8
# 蛋白質評分
protein = nutrition.get("protein", 0)
if protein > 15:
score += 10
elif protein < 5:
score -= 10
# 鈉含量評分
sodium = nutrition.get("sodium", 0)
if sodium > 800:
score -= 15
elif sodium > 600:
score -= 8
return max(0, min(100, score))
# 全域服務實例
integrated_service = IntegratedFoodAnalysisService()
def analyze_food_image_integrated(image_bytes: bytes, debug: bool = False) -> Dict[str, Any]:
"""
整合食物分析的外部接口
Args:
image_bytes: 圖片二進位數據
debug: 是否啟用調試模式
Returns:
Dict: 完整的分析結果
"""
return integrated_service.analyze_food_image(image_bytes, debug) |