Spaces:
Running
Running
import pytest | |
from fastapi.testclient import TestClient | |
from backend.app.main import app | |
from unittest.mock import patch, MagicMock | |
def test_app(): | |
with TestClient(app) as test_client: | |
yield test_client | |
def sample_image(): | |
"""Create a sample in-memory image for testing""" | |
from PIL import Image | |
from io import BytesIO | |
# Create a simple red image | |
img = Image.new('RGB', (100, 100), color='red') | |
img_byte_arr = BytesIO() | |
img.save(img_byte_arr, format='JPEG') | |
img_byte_arr.seek(0) | |
# Return the image data as bytes | |
return img_byte_arr.getvalue() | |
def mock_analyzer(): | |
with patch('transformers.AutoImageProcessor') as mock_processor, \ | |
patch('transformers.AutoModelForImageClassification') as mock_model, \ | |
patch('anthropic.Anthropic') as mock_anthropic: | |
# Setup mock processor | |
mock_processor.from_pretrained.return_value = MagicMock() | |
# Setup mock model | |
mock_model.from_pretrained.return_value = MagicMock() | |
# Setup mock anthropic | |
mock_anthropic.return_value = MagicMock() | |
yield ( | |
mock_processor.from_pretrained.return_value, | |
mock_model.from_pretrained.return_value, | |
mock_anthropic.return_value | |
) | |