Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,870 Bytes
853528a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import numpy as np
import torch
import torch.nn.functional as F
def se3_inverse(T):
"""
Computes the inverse of a batch of SE(3) matrices.
T: Tensor of shape (B, 4, 4)
"""
if len(T.shape) == 2:
T = T[None]
unseq_flag = True
else:
unseq_flag = False
if torch.is_tensor(T):
R = T[:, :3, :3]
t = T[:, :3, 3].unsqueeze(-1)
R_inv = R.transpose(-2, -1)
t_inv = -torch.matmul(R_inv, t)
T_inv = torch.cat([
torch.cat([R_inv, t_inv], dim=-1),
torch.tensor([0, 0, 0, 1], device=T.device, dtype=T.dtype).repeat(T.shape[0], 1, 1)
], dim=1)
else:
R = T[:, :3, :3]
t = T[:, :3, 3, np.newaxis]
R_inv = np.swapaxes(R, -2, -1)
t_inv = -R_inv @ t
bottom_row = np.zeros((T.shape[0], 1, 4), dtype=T.dtype)
bottom_row[:, :, 3] = 1
top_part = np.concatenate([R_inv, t_inv], axis=-1)
T_inv = np.concatenate([top_part, bottom_row], axis=1)
if unseq_flag:
T_inv = T_inv[0]
return T_inv
def get_pixel(H, W):
# get 2D pixels (u, v) for image_a in cam_a pixel space
u_a, v_a = np.meshgrid(np.arange(W), np.arange(H))
# u_a = np.flip(u_a, axis=1)
# v_a = np.flip(v_a, axis=0)
pixels_a = np.stack([
u_a.flatten() + 0.5,
v_a.flatten() + 0.5,
np.ones_like(u_a.flatten())
], axis=0)
return pixels_a
def depthmap_to_absolute_camera_coordinates(depthmap, camera_intrinsics, camera_pose, z_far=0, **kw):
"""
Args:
- depthmap (HxW array):
- camera_intrinsics: a 3x3 matrix
- camera_pose: a 4x3 or 4x4 cam2world matrix
Returns:
pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels."""
X_cam, valid_mask = depthmap_to_camera_coordinates(depthmap, camera_intrinsics)
if z_far > 0:
valid_mask = valid_mask & (depthmap < z_far)
X_world = X_cam # default
if camera_pose is not None:
# R_cam2world = np.float32(camera_params["R_cam2world"])
# t_cam2world = np.float32(camera_params["t_cam2world"]).squeeze()
R_cam2world = camera_pose[:3, :3]
t_cam2world = camera_pose[:3, 3]
# Express in absolute coordinates (invalid depth values)
X_world = np.einsum("ik, vuk -> vui", R_cam2world, X_cam) + t_cam2world[None, None, :]
return X_world, valid_mask
def depthmap_to_camera_coordinates(depthmap, camera_intrinsics, pseudo_focal=None):
"""
Args:
- depthmap (HxW array):
- camera_intrinsics: a 3x3 matrix
Returns:
pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels.
"""
camera_intrinsics = np.float32(camera_intrinsics)
H, W = depthmap.shape
# Compute 3D ray associated with each pixel
# Strong assumption: there are no skew terms
# assert camera_intrinsics[0, 1] == 0.0
# assert camera_intrinsics[1, 0] == 0.0
if pseudo_focal is None:
fu = camera_intrinsics[0, 0]
fv = camera_intrinsics[1, 1]
else:
assert pseudo_focal.shape == (H, W)
fu = fv = pseudo_focal
cu = camera_intrinsics[0, 2]
cv = camera_intrinsics[1, 2]
u, v = np.meshgrid(np.arange(W), np.arange(H))
z_cam = depthmap
x_cam = (u - cu) * z_cam / fu
y_cam = (v - cv) * z_cam / fv
X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1).astype(np.float32)
# Mask for valid coordinates
valid_mask = (depthmap > 0.0)
# Invalid any depth > 80m
valid_mask = valid_mask
return X_cam, valid_mask
def homogenize_points(
points,
):
"""Convert batched points (xyz) to (xyz1)."""
return torch.cat([points, torch.ones_like(points[..., :1])], dim=-1)
def get_gt_warp(depth1, depth2, T_1to2, K1, K2, depth_interpolation_mode = 'bilinear', relative_depth_error_threshold = 0.05, H = None, W = None):
if H is None:
B,H,W = depth1.shape
else:
B = depth1.shape[0]
with torch.no_grad():
x1_n = torch.meshgrid(
*[
torch.linspace(
-1 + 1 / n, 1 - 1 / n, n, device=depth1.device
)
for n in (B, H, W)
],
indexing = 'ij'
)
x1_n = torch.stack((x1_n[2], x1_n[1]), dim=-1).reshape(B, H * W, 2)
mask, x2 = warp_kpts(
x1_n.double(),
depth1.double(),
depth2.double(),
T_1to2.double(),
K1.double(),
K2.double(),
depth_interpolation_mode = depth_interpolation_mode,
relative_depth_error_threshold = relative_depth_error_threshold,
)
prob = mask.float().reshape(B, H, W)
x2 = x2.reshape(B, H, W, 2)
return x2, prob
@torch.no_grad()
def warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1, smooth_mask = False, return_relative_depth_error = False, depth_interpolation_mode = "bilinear", relative_depth_error_threshold = 0.05):
"""Warp kpts0 from I0 to I1 with depth, K and Rt
Also check covisibility and depth consistency.
Depth is consistent if relative error < 0.2 (hard-coded).
# https://github.com/zju3dv/LoFTR/blob/94e98b695be18acb43d5d3250f52226a8e36f839/src/loftr/utils/geometry.py adapted from here
Args:
kpts0 (torch.Tensor): [N, L, 2] - <x, y>, should be normalized in (-1,1)
depth0 (torch.Tensor): [N, H, W],
depth1 (torch.Tensor): [N, H, W],
T_0to1 (torch.Tensor): [N, 3, 4],
K0 (torch.Tensor): [N, 3, 3],
K1 (torch.Tensor): [N, 3, 3],
Returns:
calculable_mask (torch.Tensor): [N, L]
warped_keypoints0 (torch.Tensor): [N, L, 2] <x0_hat, y1_hat>
"""
(
n,
h,
w,
) = depth0.shape
if depth_interpolation_mode == "combined":
# Inspired by approach in inloc, try to fill holes from bilinear interpolation by nearest neighbour interpolation
if smooth_mask:
raise NotImplementedError("Combined bilinear and NN warp not implemented")
valid_bilinear, warp_bilinear = warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1,
smooth_mask = smooth_mask,
return_relative_depth_error = return_relative_depth_error,
depth_interpolation_mode = "bilinear",
relative_depth_error_threshold = relative_depth_error_threshold)
valid_nearest, warp_nearest = warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1,
smooth_mask = smooth_mask,
return_relative_depth_error = return_relative_depth_error,
depth_interpolation_mode = "nearest-exact",
relative_depth_error_threshold = relative_depth_error_threshold)
nearest_valid_bilinear_invalid = (~valid_bilinear).logical_and(valid_nearest)
warp = warp_bilinear.clone()
warp[nearest_valid_bilinear_invalid] = warp_nearest[nearest_valid_bilinear_invalid]
valid = valid_bilinear | valid_nearest
return valid, warp
kpts0_depth = F.grid_sample(depth0[:, None], kpts0[:, :, None], mode = depth_interpolation_mode, align_corners=False)[
:, 0, :, 0
]
kpts0 = torch.stack(
(w * (kpts0[..., 0] + 1) / 2, h * (kpts0[..., 1] + 1) / 2), dim=-1
) # [-1+1/h, 1-1/h] -> [0.5, h-0.5]
# Sample depth, get calculable_mask on depth != 0
# nonzero_mask = kpts0_depth != 0
# Sample depth, get calculable_mask on depth > 0
nonzero_mask = kpts0_depth > 0
# Unproject
kpts0_h = (
torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1)
* kpts0_depth[..., None]
) # (N, L, 3)
kpts0_n = K0.inverse() @ kpts0_h.transpose(2, 1) # (N, 3, L)
kpts0_cam = kpts0_n
# Rigid Transform
w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]] # (N, 3, L)
w_kpts0_depth_computed = w_kpts0_cam[:, 2, :]
# Project
w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1) # (N, L, 3)
w_kpts0 = w_kpts0_h[:, :, :2] / (
w_kpts0_h[:, :, [2]] + 1e-4
) # (N, L, 2), +1e-4 to avoid zero depth
# Covisible Check
h, w = depth1.shape[1:3]
covisible_mask = (
(w_kpts0[:, :, 0] > 0)
* (w_kpts0[:, :, 0] < w - 1)
* (w_kpts0[:, :, 1] > 0)
* (w_kpts0[:, :, 1] < h - 1)
)
w_kpts0 = torch.stack(
(2 * w_kpts0[..., 0] / w - 1, 2 * w_kpts0[..., 1] / h - 1), dim=-1
) # from [0.5,h-0.5] -> [-1+1/h, 1-1/h]
# w_kpts0[~covisible_mask, :] = -5 # xd
w_kpts0_depth = F.grid_sample(
depth1[:, None], w_kpts0[:, :, None], mode=depth_interpolation_mode, align_corners=False
)[:, 0, :, 0]
relative_depth_error = (
(w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth
).abs()
if not smooth_mask:
consistent_mask = relative_depth_error < relative_depth_error_threshold
else:
consistent_mask = (-relative_depth_error/smooth_mask).exp()
valid_mask = nonzero_mask * covisible_mask * consistent_mask
if return_relative_depth_error:
return relative_depth_error, w_kpts0
else:
return valid_mask, w_kpts0
def geotrf(Trf, pts, ncol=None, norm=False):
""" Apply a geometric transformation to a list of 3-D points.
H: 3x3 or 4x4 projection matrix (typically a Homography)
p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)
ncol: int. number of columns of the result (2 or 3)
norm: float. if != 0, the resut is projected on the z=norm plane.
Returns an array of projected 2d points.
"""
assert Trf.ndim >= 2
if isinstance(Trf, np.ndarray):
pts = np.asarray(pts)
elif isinstance(Trf, torch.Tensor):
pts = torch.as_tensor(pts, dtype=Trf.dtype)
# adapt shape if necessary
output_reshape = pts.shape[:-1]
ncol = ncol or pts.shape[-1]
# optimized code
if (isinstance(Trf, torch.Tensor) and isinstance(pts, torch.Tensor) and
Trf.ndim == 3 and pts.ndim == 4):
d = pts.shape[3]
if Trf.shape[-1] == d:
pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts)
elif Trf.shape[-1] == d + 1:
pts = torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts) + Trf[:, None, None, :d, d]
else:
raise ValueError(f'bad shape, not ending with 3 or 4, for {pts.shape=}')
else:
if Trf.ndim >= 3:
n = Trf.ndim - 2
assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match'
Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])
if pts.ndim > Trf.ndim:
# Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
elif pts.ndim == 2:
# Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
pts = pts[:, None, :]
if pts.shape[-1] + 1 == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
elif pts.shape[-1] == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf
else:
pts = Trf @ pts.T
if pts.ndim >= 2:
pts = pts.swapaxes(-1, -2)
if norm:
pts = pts / pts[..., -1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
if norm != 1:
pts *= norm
res = pts[..., :ncol].reshape(*output_reshape, ncol)
return res
def inv(mat):
""" Invert a torch or numpy matrix
"""
if isinstance(mat, torch.Tensor):
return torch.linalg.inv(mat)
if isinstance(mat, np.ndarray):
return np.linalg.inv(mat)
raise ValueError(f'bad matrix type = {type(mat)}')
def opencv_camera_to_plucker(poses, K, H, W):
device = poses.device
B = poses.shape[0]
pixel = torch.from_numpy(get_pixel(H, W).astype(np.float32)).to(device).T.reshape(H, W, 3)[None].repeat(B, 1, 1, 1) # (3, H, W)
pixel = torch.einsum('bij, bhwj -> bhwi', torch.inverse(K), pixel)
ray_directions = torch.einsum('bij, bhwj -> bhwi', poses[..., :3, :3], pixel)
ray_origins = poses[..., :3, 3][:, None, None].repeat(1, H, W, 1)
ray_directions = ray_directions / ray_directions.norm(dim=-1, keepdim=True)
plucker_normal = torch.cross(ray_origins, ray_directions, dim=-1)
plucker_ray = torch.cat([ray_directions, plucker_normal], dim=-1)
return plucker_ray
def depth_edge(depth: torch.Tensor, atol: float = None, rtol: float = None, kernel_size: int = 3, mask: torch.Tensor = None) -> torch.BoolTensor:
"""
Compute the edge mask of a depth map. The edge is defined as the pixels whose neighbors have a large difference in depth.
Args:
depth (torch.Tensor): shape (..., height, width), linear depth map
atol (float): absolute tolerance
rtol (float): relative tolerance
Returns:
edge (torch.Tensor): shape (..., height, width) of dtype torch.bool
"""
shape = depth.shape
depth = depth.reshape(-1, 1, *shape[-2:])
if mask is not None:
mask = mask.reshape(-1, 1, *shape[-2:])
if mask is None:
diff = (F.max_pool2d(depth, kernel_size, stride=1, padding=kernel_size // 2) + F.max_pool2d(-depth, kernel_size, stride=1, padding=kernel_size // 2))
else:
diff = (F.max_pool2d(torch.where(mask, depth, -torch.inf), kernel_size, stride=1, padding=kernel_size // 2) + F.max_pool2d(torch.where(mask, -depth, -torch.inf), kernel_size, stride=1, padding=kernel_size // 2))
edge = torch.zeros_like(depth, dtype=torch.bool)
if atol is not None:
edge |= diff > atol
if rtol is not None:
edge |= (diff / depth).nan_to_num_() > rtol
edge = edge.reshape(*shape)
return edge |