Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import argparse | |
from pi3.utils.basic import load_images_as_tensor, write_ply | |
from pi3.utils.geometry import depth_edge | |
from pi3.models.pi3 import Pi3 | |
if __name__ == '__main__': | |
# --- Argument Parsing --- | |
parser = argparse.ArgumentParser(description="Run inference with the Pi3 model.") | |
parser.add_argument("--data_path", type=str, default='examples/parkour', | |
help="Path to the input image directory or a video file.") | |
parser.add_argument("--save_path", type=str, default='examples/parkour.ply', | |
help="Path to save the output .ply file.") | |
parser.add_argument("--interval", type=int, default=-1, | |
help="Interval to sample image. Default: 1 for images dir, 10 for video") | |
parser.add_argument("--ckpt", type=str, default=None, | |
help="Path to the model checkpoint file. Default: None") | |
parser.add_argument("--device", type=str, default='cuda', | |
help="Device to run inference on ('cuda' or 'cpu'). Default: 'cuda'") | |
args = parser.parse_args() | |
if args.interval < 0: | |
args.interval = 10 if args.data_path.endswith('.mp4') else 1 | |
print(f'Sampling interval: {args.interval}') | |
# from pi3.utils.debug import setup_debug | |
# setup_debug() | |
# 1. Prepare model | |
print(f"Loading model...") | |
device = torch.device(args.device) | |
if args.ckpt is not None: | |
model = Pi3().to(device).eval() | |
if args.ckpt.endswith('.safetensors'): | |
from safetensors.torch import load_file | |
weight = load_file(args.ckpt) | |
else: | |
weight = torch.load(args.ckpt, map_location=device, weights_only=False) | |
model.load_state_dict(weight) | |
else: | |
model = Pi3.from_pretrained("yyfz233/Pi3").to(device).eval() | |
# 2. Prepare input data | |
# The load_images_as_tensor function will print the loading path | |
imgs = load_images_as_tensor(args.data_path, interval=args.interval).to(device) # (N, 3, H, W) | |
# 3. Infer | |
print("Running model inference...") | |
with torch.no_grad(): | |
with torch.amp.autocast('cuda', dtype=torch.bfloat16): | |
res = model(imgs[None]) # Add batch dimension | |
# 4. process mask | |
masks = torch.sigmoid(res['conf'][..., 0]) > 0.1 | |
non_edge = ~depth_edge(res['local_points'][..., 2], rtol=0.03) | |
masks = torch.logical_and(masks, non_edge)[0] | |
# 5. Save points | |
print(f"Saving point cloud to: {args.save_path}") | |
write_ply(res['points'][0][masks].cpu(), imgs.permute(0, 2, 3, 1)[masks], args.save_path) | |
print("Done.") |