# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py import logging import os import warnings from torch import Tensor from torch import nn import torch from torch.nn.functional import scaled_dot_product_attention from torch.nn.attention import SDPBackend XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None try: if XFORMERS_ENABLED: from xformers.ops import memory_efficient_attention, unbind XFORMERS_AVAILABLE = True # warnings.warn("xFormers is available (Attention)") else: # warnings.warn("xFormers is disabled (Attention)") raise ImportError except ImportError: XFORMERS_AVAILABLE = False # warnings.warn("xFormers is not available (Attention)") class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: Tensor, attn_bias=None) -> Tensor: B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class MemEffAttention(Attention): def forward(self, x: Tensor, attn_bias=None) -> Tensor: if not XFORMERS_AVAILABLE: if attn_bias is not None: raise AssertionError("xFormers is required for using nested tensors") return super().forward(x) B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) # q, k, v = unbind(qkv, 2) q, k, v = [qkv[:,:,i] for i in range(3)] x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x class FlashAttention(Attention): def forward(self, x: Tensor, attn_bias=None) -> Tensor: B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).transpose(1, 3) # q, k, v = unbind(qkv, 2) q, k, v = [qkv[:,:,i] for i in range(3)] if q.dtype == torch.bfloat16: with nn.attention.sdpa_kernel(SDPBackend.FLASH_ATTENTION): x = scaled_dot_product_attention(q, k, v) else: with nn.attention.sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION]): x = scaled_dot_product_attention(q, k, v) x = x.transpose(1, 2).reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x """ Following is written by GPT-4o """ class CrossAttentionRope(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, qk_norm: bool = False, norm_layer: nn.Module = nn.LayerNorm, rope=None, ) -> None: super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 # Separate projection layers for query, key, and value self.q_proj = nn.Linear(dim, dim, bias=qkv_bias) self.k_proj = nn.Linear(dim, dim, bias=qkv_bias) self.v_proj = nn.Linear(dim, dim, bias=qkv_bias) self.q_norm = norm_layer(head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) self.rope = rope def forward(self, query: Tensor, key: Tensor, value: Tensor, attn_bias=None, qpos=None, kpos=None) -> Tensor: """ Args: query: Tensor of shape (B, N, C), input query key: Tensor of shape (B, M, C), input key value: Tensor of shape (B, M, C), input value attn_bias: Optional tensor for attention bias Returns: Tensor of shape (B, N, C), output of cross-attention """ B, N, C = query.shape _, M, _ = key.shape # Project query, key, and value q = self.q_proj(query).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) k = self.k_proj(key).reshape(B, M, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) v = self.v_proj(value).reshape(B, M, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) q, k = self.q_norm(q).to(v.dtype), self.k_norm(k).to(v.dtype) if self.rope is not None: q = self.rope(q, qpos) k = self.rope(k, kpos) # Scale query q = q * self.scale # Compute attention scores attn = q @ k.transpose(-2, -1) # (B, num_heads, N, M) if attn_bias is not None: attn = attn + attn_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) # Compute attention output x = (attn @ v).transpose(1, 2).reshape(B, N, C) # (B, N, C) # Final projection x = self.proj(x) x = self.proj_drop(x) return x class MemEffCrossAttentionRope(CrossAttentionRope): def forward(self, query: Tensor, key: Tensor, value: Tensor, attn_bias=None, qpos=None, kpos=None) -> Tensor: """ Args: query: Tensor of shape (B, N, C), input query key: Tensor of shape (B, M, C), input key value: Tensor of shape (B, M, C), input value attn_bias: Optional tensor for attention bias Returns: Tensor of shape (B, N, C), output of cross-attention """ if not XFORMERS_AVAILABLE: if attn_bias is not None: raise AssertionError("xFormers is required for using nested tensors") return super().forward(query, key, value, attn_bias) B, N, C = query.shape _, M, _ = key.shape # Project query, key, and value q = self.q_proj(query).reshape(B, N, self.num_heads, C // self.num_heads) k = self.k_proj(key).reshape(B, M, self.num_heads, C // self.num_heads) v = self.v_proj(value).reshape(B, M, self.num_heads, C // self.num_heads) q = q.transpose(1, 2) k = k.transpose(1, 2) q, k = self.q_norm(q).to(v.dtype), self.k_norm(k).to(v.dtype) if self.rope is not None: q = self.rope(q, qpos) k = self.rope(k, kpos) q = q.transpose(1, 2) k = k.transpose(1, 2) # Compute memory-efficient attention x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape(B, N, C) # Final projection x = self.proj(x) x = self.proj_drop(x) return x class AttentionRope(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, qk_norm: bool = False, norm_layer: nn.Module = nn.LayerNorm, rope=None ) -> None: super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) self.q_norm = norm_layer(head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(head_dim) if qk_norm else nn.Identity() self.rope = rope def forward(self, x: Tensor, attn_bias=None, xpos=None) -> Tensor: B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q, k = self.q_norm(q).to(v.dtype), self.k_norm(k).to(v.dtype) if self.rope is not None: q = self.rope(q, xpos) k = self.rope(k, xpos) q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class MemEffAttentionRope(AttentionRope): def forward(self, x: Tensor, attn_bias=None, xpos=None) -> Tensor: if not XFORMERS_AVAILABLE: if attn_bias is not None: raise AssertionError("xFormers is required for using nested tensors") return super().forward(x) B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) qkv = qkv.transpose(1, 3) # q, k, v = unbind(qkv, 2) q, k, v = [qkv[:,:,i] for i in range(3)] q, k = self.q_norm(q).to(v.dtype), self.k_norm(k).to(v.dtype) if self.rope is not None: q = self.rope(q, xpos) k = self.rope(k, xpos) q = q.transpose(1, 2) k = k.transpose(1, 2) v = v.transpose(1, 2) x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape([B, N, C]) # score_matrix = (q.permute(0, 2, 1, 3) * self.scale @ k.permute(0, 2, 1, 3).transpose(-2, -1)).sum(dim=1).reshape(frame_num, 261, frame_num, 261).mean(dim=[1, 3]).sum(1) # for frame attention matrix # global_valid_id = torch.where(score_matrix > 0) # score_matrix = (q.permute(0, 2, 1, 3) * self.scale @ k.permute(0, 2, 1, 3).transpose(-2, -1)).sum(dim=1) x = self.proj(x) x = self.proj_drop(x) return x class FlashAttentionRope(AttentionRope): def forward(self, x: Tensor, attn_bias=None, xpos=None) -> Tensor: B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).transpose(1, 3) # q, k, v = unbind(qkv, 2) q, k, v = [qkv[:,:,i] for i in range(3)] q, k = self.q_norm(q).to(v.dtype), self.k_norm(k).to(v.dtype) if self.rope is not None: q = self.rope(q, xpos) k = self.rope(k, xpos) if q.dtype == torch.bfloat16: with nn.attention.sdpa_kernel(SDPBackend.FLASH_ATTENTION): x = scaled_dot_product_attention(q, k, v) else: with nn.attention.sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION]): x = scaled_dot_product_attention(q, k, v) x = x.transpose(1, 2).reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x def get_attn_score(blk_class, x, frame_num, token_length, xpos=None): x = blk_class.norm1(x) B, N, C = x.shape qkv = blk_class.attn.qkv(x).reshape(B, N, 3, blk_class.attn.num_heads, C // blk_class.attn.num_heads) qkv = qkv.transpose(1, 3) # q, k, v = unbind(qkv, 2) q, k, v = [qkv[:,:,i] for i in range(3)] q, k = blk_class.attn.q_norm(q).to(v.dtype), blk_class.attn.k_norm(k).to(v.dtype) if blk_class.attn.rope is not None: q = blk_class.attn.rope(q, xpos) k = blk_class.attn.rope(k, xpos) q = q.transpose(1, 2) k = k.transpose(1, 2) score = (q.permute(0, 2, 1, 3) * blk_class.attn.scale @ k.permute(0, 2, 1, 3).transpose(-2, -1)).sum(dim=1).reshape(B, frame_num, token_length, frame_num, token_length).mean(dim=[2, 4]).sum(-1) return score