import torch import argparse from pi3.utils.basic import load_images_as_tensor, write_ply from pi3.utils.geometry import depth_edge from pi3.models.pi3 import Pi3 if __name__ == '__main__': # --- Argument Parsing --- parser = argparse.ArgumentParser(description="Run inference with the Pi3 model.") parser.add_argument("--data_path", type=str, default='examples/parkour', help="Path to the input image directory or a video file.") parser.add_argument("--save_path", type=str, default='examples/parkour.ply', help="Path to save the output .ply file.") parser.add_argument("--interval", type=int, default=-1, help="Interval to sample image. Default: 1 for images dir, 10 for video") parser.add_argument("--ckpt", type=str, default=None, help="Path to the model checkpoint file. Default: None") parser.add_argument("--device", type=str, default='cuda', help="Device to run inference on ('cuda' or 'cpu'). Default: 'cuda'") args = parser.parse_args() if args.interval < 0: args.interval = 10 if args.data_path.endswith('.mp4') else 1 print(f'Sampling interval: {args.interval}') # from pi3.utils.debug import setup_debug # setup_debug() # 1. Prepare model print(f"Loading model...") device = torch.device(args.device) if args.ckpt is not None: model = Pi3().to(device).eval() if args.ckpt.endswith('.safetensors'): from safetensors.torch import load_file weight = load_file(args.ckpt) else: weight = torch.load(args.ckpt, map_location=device, weights_only=False) model.load_state_dict(weight) else: model = Pi3.from_pretrained("yyfz233/Pi3").to(device).eval() # 2. Prepare input data # The load_images_as_tensor function will print the loading path imgs = load_images_as_tensor(args.data_path, interval=args.interval).to(device) # (N, 3, H, W) # 3. Infer print("Running model inference...") with torch.no_grad(): with torch.amp.autocast('cuda', dtype=torch.bfloat16): res = model(imgs[None]) # Add batch dimension # 4. process mask masks = torch.sigmoid(res['conf'][..., 0]) > 0.1 non_edge = ~depth_edge(res['local_points'][..., 2], rtol=0.03) masks = torch.logical_and(masks, non_edge)[0] # 5. Save points print(f"Saving point cloud to: {args.save_path}") write_ply(res['points'][0][masks].cpu(), imgs.permute(0, 2, 3, 1)[masks], args.save_path) print("Done.")