Spaces:
Running
Running
File size: 8,206 Bytes
67199da cfdacf5 67199da ecbee24 67199da 325c020 67199da 325c020 67199da 9ec8fec 325c020 9ec8fec 325c020 9ec8fec 325c020 9ec8fec 325c020 67199da bba4030 67199da 325c020 9ec8fec 67199da 9ec8fec 67199da 9ec8fec 325c020 9ec8fec 67199da 9ec8fec 67199da bba4030 325c020 67199da bba4030 67199da bba4030 67199da 325c020 67199da 9ec8fec 67199da 9ec8fec 325c020 9ec8fec 325c020 67199da 325c020 67199da 325c020 bba4030 67199da bba4030 67199da bba4030 67199da bba4030 cfdacf5 67199da 26295fb cfdacf5 67199da 325c020 bba4030 cfdacf5 aa0c384 325c020 67199da 325c020 67199da 445847a 67199da 26295fb 67199da 325c020 67199da 445847a 67199da bba4030 67199da bba4030 67199da bba4030 67199da 103cf37 445847a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import copy
import time
import html
from openai import OpenAI
import gradio as gr
stop_generation = False
def stream_from_vllm(messages, thinking_enabled=True, temperature=1.0):
global stop_generation
client = OpenAI()
response = client.chat.completions.create(
model="GLM-4.5",
messages=messages,
temperature=temperature,
stream=True,
max_tokens=65536,
extra_body={
"thinking": {
"type": "enabled" if thinking_enabled else "disabled",
}
}
)
for chunk in response:
if stop_generation:
break
if chunk.choices and chunk.choices[0].delta:
yield chunk.choices[0].delta
class GLM45Model:
def __init__(self):
self.accumulated_content = ""
self.accumulated_reasoning = ""
def reset_state(self):
self.accumulated_content = ""
self.accumulated_reasoning = ""
def _render_response(self, reasoning_content, regular_content, skip_think=False):
html_parts = []
if reasoning_content and not skip_think:
reasoning_escaped = html.escape(reasoning_content).replace("\n", "<br>")
think_html = (
"<details open><summary style='cursor:pointer;font-weight:bold;color:#007acc;'>Thinking</summary>"
"<div style='color:#555555;line-height:1.6;padding:15px;border-left:4px solid #007acc;margin:10px 0;background-color:#f0f7ff;border-radius:4px;'>"
+ reasoning_escaped +
"</div></details>"
)
html_parts.append(think_html)
if regular_content:
content_escaped = html.escape(regular_content).replace("\n", "<br>")
content_html = f"<div style='margin:0.5em 0; white-space: pre-wrap; line-height:1.6;'>{content_escaped}</div>"
html_parts.append(content_html)
return "".join(html_parts)
def _build_messages(self, raw_hist, sys_prompt):
msgs = []
if sys_prompt.strip():
msgs.append({"role": "system", "content": sys_prompt.strip()})
for h in raw_hist:
if h["role"] == "user":
msgs.append({"role": "user", "content": h["content"]})
else:
msg = {"role": "assistant", "content": h.get("content", "")}
if h.get("reasoning_content"):
msg["reasoning_content"] = h.get("reasoning_content")
msgs.append(msg)
return msgs
def stream_generate(self, raw_hist, sys_prompt, thinking_enabled=True, temperature=1.0):
global stop_generation
stop_generation = False
msgs = self._build_messages(raw_hist, sys_prompt)
self.reset_state()
try:
for delta in stream_from_vllm(msgs, thinking_enabled, temperature):
if stop_generation:
break
if hasattr(delta, 'content') and delta.content:
self.accumulated_content += delta.content
if hasattr(delta, 'reasoning_content') and delta.reasoning_content:
self.accumulated_reasoning += delta.reasoning_content
yield self._render_response(self.accumulated_reasoning, self.accumulated_content, not thinking_enabled)
except Exception as e:
yield self._render_response("", f"Error: {str(e)}")
glm45 = GLM45Model()
def chat(msg, raw_hist, sys_prompt, thinking_enabled, temperature):
global stop_generation
stop_generation = False
if not msg.strip():
return raw_hist, copy.deepcopy(raw_hist), ""
if raw_hist is None:
raw_hist = []
raw_hist.append({"role": "user", "content": msg.strip()})
place = {
"role": "assistant",
"content": "",
"reasoning_content": ""
}
raw_hist.append(place)
yield raw_hist, copy.deepcopy(raw_hist), ""
try:
for chunk in glm45.stream_generate(raw_hist[:-1], sys_prompt, thinking_enabled, temperature):
if stop_generation:
break
place["content"] = glm45.accumulated_content
place["reasoning_content"] = glm45.accumulated_reasoning
place["display_content"] = chunk
yield raw_hist, copy.deepcopy(raw_hist), ""
except Exception as e:
place["content"] = f"Error: {str(e)}"
place["display_content"] = f"<div style='color: red;'>Error: {html.escape(str(e))}</div>"
yield raw_hist, copy.deepcopy(raw_hist), ""
def reset():
global stop_generation
stop_generation = True
time.sleep(0.1)
return [], [], ""
def format_history_for_display(raw_hist):
display_hist = []
for msg in raw_hist:
if msg["role"] == "user":
display_hist.append({"role": "user", "content": msg["content"]})
else:
content = msg.get("display_content", msg.get("content", ""))
display_hist.append({"role": "assistant", "content": content})
return display_hist
demo = gr.Blocks(title="GLM-4.5 API Demo", theme=gr.themes.Soft())
with demo:
gr.HTML(
"<div style='text-align:center;font-size:32px;font-weight:bold;margin-bottom:10px;'>GLM-4.5 API Demo</div>"
"<div style='text-align:center;color:red;font-size:16px;margin-bottom:20px;'>"
"This demo uses the API version of the service for faster response speeds.<br>"
"Only chat functionality with 64K token length is supported. For tool usage, MCP support, and web search, please refer to the API documentation.</div>"
"<div style='text-align:center;'><a href='https://modelscope.cn/collections/GLM-45-b8693e2a08984f'>Model</a> | "
"<a href='https://github.com/zai-org/GLM-4.5'>Github</a> | "
"<a href='http://z.ai/blog/glm-4.5'>Blog</a> | "
"<a href='https://docs.bigmodel.cn/cn/guide/models/text/glm-4.5'>API Docs</a></div>"
)
raw_history = gr.State([])
with gr.Row():
with gr.Column(scale=7):
chatbox = gr.Chatbot(
label="Chat",
type="messages",
height=600,
elem_classes="chatbot-container",
sanitize_html=False,
line_breaks=True
)
textbox = gr.Textbox(label="Message", lines=3)
with gr.Row():
send = gr.Button("Send", variant="primary")
clear = gr.Button("Clear")
with gr.Column(scale=1):
thinking_toggle = gr.Checkbox(label="Enable Thinking", value=True)
gr.HTML(
"<div style='color:red;font-size:12px;margin-top:5px;margin-bottom:15px;'>"
"Enabled: Activates the model's thinking capability. The model will decide whether to think based on the situation and may return empty thinking content.<br>"
"Disabled: Disables the model's thinking capability. The model will answer questions directly without reasoning."
"</div>"
)
temperature_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.01,
label="Temperature"
)
sys = gr.Textbox(label="System Prompt", lines=6)
def chat_wrapper(msg, raw_hist, sys_prompt, thinking_enabled, temperature):
for hist, raw_hist_updated, textbox_value in chat(msg, raw_hist, sys_prompt, thinking_enabled, temperature):
display_hist = format_history_for_display(hist)
yield display_hist, raw_hist_updated, textbox_value
send.click(
chat_wrapper,
inputs=[textbox, raw_history, sys, thinking_toggle, temperature_slider],
outputs=[chatbox, raw_history, textbox]
)
textbox.submit(
chat_wrapper,
inputs=[textbox, raw_history, sys, thinking_toggle, temperature_slider],
outputs=[chatbox, raw_history, textbox]
)
clear.click(
reset,
outputs=[chatbox, raw_history, textbox]
)
if __name__ == "__main__":
demo.queue(max_size=None, default_concurrency_limit=None)
demo.launch() |