Spaces:
Sleeping
Sleeping
File size: 12,772 Bytes
c361481 dc3a847 095a10c dc3a847 2d7d97f b68a80c dc3a847 b68a80c 2d7d97f b68a80c 2d7d97f dc3a847 2d7d97f dc3a847 b68a80c 2d7d97f b68a80c dc3a847 2d7d97f dc3a847 b68a80c 2d7d97f dc3a847 b68a80c dc3a847 2d7d97f dc3a847 2d7d97f dc3a847 b68a80c dc3a847 2d7d97f dc3a847 2d7d97f dc3a847 2d7d97f dc3a847 2d7d97f ec60e4a b68a80c 2d7d97f b68a80c 2d7d97f ec60e4a 2d7d97f ec60e4a b68a80c 2d7d97f b68a80c 2d7d97f ec60e4a 2d7d97f ec60e4a b68a80c 2d7d97f b68a80c ec60e4a 2d7d97f ec60e4a b68a80c ec60e4a b68a80c ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a b68a80c ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a b68a80c ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a b68a80c ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a 2d7d97f ec60e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import os
# β
Fix PermissionError on Hugging Face Spaces
os.environ["HF_HOME"] = "/tmp"
os.environ["HF_DATASETS_CACHE"] = "/tmp"
import streamlit as st
from datasets import load_dataset
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from collections import defaultdict, Counter
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
import random
st.title("π§ Language Model Explorer")
###################################
# Sidebar configuration
###################################
dataset_name = st.sidebar.selectbox(
"Choose Dataset",
["squad", "tiny_shakespeare"]
)
tokenizer_type = st.sidebar.selectbox(
"Choose Tokenizer",
["character", "word"]
)
model_type = st.sidebar.selectbox(
"Choose Model",
["N-gram", "Feed Forward NN", "Decision Tree", "Gradient Boosted Tree", "RNN"]
)
temperature = st.sidebar.slider("Sampling Temperature", 0.1, 2.0, 1.0)
context_size = st.sidebar.slider("Context Size (how many tokens to look back)", min_value=2, max_value=10, value=3, step=1)
# Number of tokens from dataset to use for training (minimum 100 tokens)
num_train_tokens = st.sidebar.slider("Number of tokens from dataset to train on", min_value=100, max_value=100000, value=1000, step=100)
train_button = st.sidebar.button("Train Model")
device = torch.device("cpu") # force CPU usage
###################################
# Load dataset
###################################
@st.cache_data
def load_text(dataset_name):
if dataset_name == "squad":
data = load_dataset("squad", split="train[:1%]")
texts = [x['context'] for x in data]
elif dataset_name == "tiny_shakespeare":
data = load_dataset("tiny_shakespeare")
texts = [data['train'][0]['text']]
else:
texts = ["hello world"]
return " ".join(texts)
text_data = load_text(dataset_name)
###################################
# Tokenization
###################################
def tokenize(text, tokenizer_type):
if tokenizer_type == "character":
tokens = list(text)
elif tokenizer_type == "word":
tokens = text.split()
return tokens
tokens_all = tokenize(text_data, tokenizer_type)
# Cap tokens to requested number for training
tokens = tokens_all[:num_train_tokens]
vocab = list(set(tokens))
PAD_TOKEN = "<PAD>"
if PAD_TOKEN not in vocab:
vocab.append(PAD_TOKEN)
token_to_idx = {tok: i for i, tok in enumerate(vocab)}
idx_to_token = {i: tok for tok, i in token_to_idx.items()}
###################################
# Helper to pad context
###################################
def pad_context(context, size):
pad_len = size - len(context)
if pad_len > 0:
return [PAD_TOKEN]*pad_len + context
else:
return context[-size:]
###################################
# Models
###################################
class NGramModel:
def __init__(self, tokens, n=3):
self.n = n
self.model = defaultdict(Counter)
for i in range(len(tokens) - n):
context = tuple(tokens[i:i+n-1])
next_token = tokens[i+n-1]
self.model[context][next_token] += 1
def predict(self, context, temperature=1.0):
context = tuple(context[-(self.n-1):])
counts = self.model.get(context, None)
if counts is None:
return random.choice(list(token_to_idx.keys()))
items = list(counts.items())
tokens_, freqs = zip(*items)
probs = np.array(freqs, dtype=float)
probs = probs ** (1.0 / temperature)
probs /= probs.sum()
return np.random.choice(tokens_, p=probs)
###################################
# Feed Forward NN
###################################
class FFNN(nn.Module):
def __init__(self, vocab_size, context_size, hidden_size=128):
super().__init__()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.fc1 = nn.Linear(hidden_size * context_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, vocab_size)
def forward(self, x):
x = self.embed(x)
x = x.view(x.size(0), -1)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
def train_ffnn(tokens, context_size=3, epochs=3):
data = []
for i in range(len(tokens) - (context_size - 1)):
context = tokens[i : i + context_size - 1]
context = pad_context(context, context_size - 1)
target = tokens[i + context_size - 1]
data.append((
torch.tensor([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context], device=device),
token_to_idx.get(target, token_to_idx[PAD_TOKEN])
))
if len(data) == 0:
st.warning("No training data generated. Increase dataset size or reduce context size.")
return None
model = FFNN(len(vocab), context_size - 1).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
progress_bar = st.progress(0)
total_steps = len(data) * epochs
step = 0
model.train()
for epoch in range(epochs):
total_loss = 0
random.shuffle(data)
for x, y in data:
x = x.unsqueeze(0)
y = torch.tensor([y], device=device)
optimizer.zero_grad()
out = model(x)
loss = criterion(out, y)
loss.backward()
optimizer.step()
total_loss += loss.item()
step += 1
progress_bar.progress(step / total_steps)
st.write(f"Epoch {epoch+1}, Loss: {total_loss/len(data):.4f}")
progress_bar.empty()
return model
def ffnn_predict(model, context, temperature=1.0):
context = pad_context(context, context_size - 1)
x = torch.tensor([token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context], device=device).unsqueeze(0)
with torch.no_grad():
logits = model(x).squeeze()
probs = torch.softmax(logits / temperature, dim=0).cpu().numpy()
return np.random.choice(vocab, p=probs)
###################################
# Decision Tree
###################################
def train_dt(tokens, context_size=3):
X, y = [], []
for i in range(len(tokens) - (context_size - 1)):
context = tokens[i : i + context_size - 1]
context = pad_context(context, context_size - 1)
target = tokens[i + context_size - 1]
X.append([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context])
y.append(token_to_idx.get(target, token_to_idx[PAD_TOKEN]))
with st.spinner("Training Decision Tree..."):
model = DecisionTreeClassifier()
model.fit(X, y)
return model
def dt_predict(model, context):
context = pad_context(context, context_size - 1)
x = [token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context]
pred = model.predict([x])[0]
return idx_to_token[pred]
###################################
# Gradient Boosted Tree
###################################
def train_gbt(tokens, context_size=3):
X, y = [], []
for i in range(len(tokens) - (context_size - 1)):
context = tokens[i : i + context_size - 1]
context = pad_context(context, context_size - 1)
target = tokens[i + context_size - 1]
X.append([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context])
y.append(token_to_idx.get(target, token_to_idx[PAD_TOKEN]))
with st.spinner("Training Gradient Boosted Tree..."):
model = GradientBoostingClassifier()
model.fit(X, y)
return model
def gbt_predict(model, context):
context = pad_context(context, context_size - 1)
x = [token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context]
pred = model.predict([x])[0]
return idx_to_token[pred]
###################################
# RNN
###################################
class RNNModel(nn.Module):
def __init__(self, vocab_size, embed_size=64, hidden_size=128):
super().__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.RNN(embed_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, h=None):
x = self.embed(x)
out, h = self.rnn(x, h)
out = self.fc(out[:, -1, :])
return out, h
def train_rnn(tokens, context_size=3, epochs=3):
data = []
for i in range(len(tokens) - (context_size - 1)):
context = tokens[i : i + context_size - 1]
context = pad_context(context, context_size - 1)
target = tokens[i + context_size - 1]
data.append((
torch.tensor([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context], device=device),
token_to_idx.get(target, token_to_idx[PAD_TOKEN])
))
if len(data) == 0:
st.warning("No training data generated. Increase dataset size or reduce context size.")
return None
model = RNNModel(len(vocab)).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
progress_bar = st.progress(0)
total_steps = len(data) * epochs
step = 0
model.train()
for epoch in range(epochs):
total_loss = 0
h = None
random.shuffle(data)
for x, y in data:
x = x.unsqueeze(0)
y = torch.tensor([y], device=device)
out, h = model(x, h)
loss = criterion(out, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
step += 1
progress_bar.progress(step / total_steps)
st.write(f"Epoch {epoch+1}, Loss: {total_loss/len(data):.4f}")
progress_bar.empty()
return model
def rnn_predict(model, context, temperature=1.0):
context = pad_context(context, context_size - 1)
x = torch.tensor([token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context], device=device).unsqueeze(0)
with torch.no_grad():
logits, _ = model(x)
probs = torch.softmax(logits.squeeze() / temperature, dim=0).cpu().numpy()
return np.random.choice(vocab, p=probs)
###################################
# Train and evaluate
###################################
if train_button:
st.write(f"Training **{model_type}** model with context size {context_size} on {len(tokens)} tokens...")
if model_type == "N-gram":
with st.spinner("Training N-gram model..."):
model = NGramModel(tokens, n=context_size)
elif model_type == "Feed Forward NN":
model = train_ffnn(tokens, context_size=context_size)
elif model_type == "Decision Tree":
model = train_dt(tokens, context_size=context_size)
elif model_type == "Gradient Boosted Tree":
model = train_gbt(tokens, context_size=context_size)
elif model_type == "RNN":
model = train_rnn(tokens, context_size=context_size)
if model is not None:
st.session_state["model"] = model
st.session_state["model_type"] = model_type
st.session_state["context_size"] = context_size
st.success(f"{model_type} model trained.")
else:
st.error("Training failed due to no data.")
###################################
# Chat interface
###################################
st.header("π¬ Chat with the model")
if "model" in st.session_state:
user_input = st.text_input("Type a prompt:")
if user_input:
context = tokenize(user_input, tokenizer_type)
generated = context.copy()
for _ in range(20):
ctx = pad_context(generated, st.session_state["context_size"] - 1)
if st.session_state["model_type"] == "N-gram":
next_tok = st.session_state["model"].predict(ctx, temperature)
elif st.session_state["model_type"] == "Feed Forward NN":
next_tok = ffnn_predict(st.session_state["model"], ctx, temperature)
elif st.session_state["model_type"] == "Decision Tree":
next_tok = dt_predict(st.session_state["model"], ctx)
elif st.session_state["model_type"] == "Gradient Boosted Tree":
next_tok = gbt_predict(st.session_state["model"], ctx)
elif st.session_state["model_type"] == "RNN":
next_tok = rnn_predict(st.session_state["model"], ctx, temperature)
generated.append(next_tok)
if next_tok == "<END>":
break
if tokenizer_type == "character":
output = "".join(generated)
else:
output = " ".join(generated)
st.write("**Model Output:**")
st.write(output)
else:
st.info("Train a model to begin chatting.")
|