Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -54,8 +54,9 @@ vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
|
54 |
|
55 |
|
56 |
# Add at the top of your module, alongside your other globals
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
@spaces.GPU()
|
61 |
def get_image_description(image: Image.Image) -> str:
|
@@ -97,61 +98,60 @@ SHARED_EMB_FN = embedding_functions.SentenceTransformerEmbeddingFunction(
|
|
97 |
|
98 |
def get_vectordb(text: str, images: list[Image.Image], img_names: list[str]):
|
99 |
"""
|
100 |
-
Build
|
101 |
• text_db (chunks of the PDF text)
|
102 |
• image_db (image descriptions + raw image bytes)
|
103 |
-
Returns the Chroma client for later querying.
|
104 |
"""
|
105 |
-
#
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
for col in ("text_db", "image_db"):
|
108 |
if col in [c.name for c in client.list_collections()]:
|
109 |
client.delete_collection(col)
|
110 |
|
111 |
-
# ——— 2) Create fresh collections —————————
|
112 |
text_col = client.get_or_create_collection(
|
113 |
name="text_db",
|
114 |
-
embedding_function=SHARED_EMB_FN
|
115 |
-
data_loader=ImageLoader(), # loader only matters for images, benign here
|
116 |
)
|
117 |
img_col = client.get_or_create_collection(
|
118 |
name="image_db",
|
119 |
embedding_function=SHARED_EMB_FN,
|
120 |
-
metadata={"hnsw:space": "cosine"}
|
121 |
-
data_loader=ImageLoader(),
|
122 |
)
|
123 |
|
124 |
-
#
|
125 |
if images:
|
126 |
-
descs = []
|
127 |
-
metas = []
|
128 |
for idx, img in enumerate(images):
|
129 |
-
# build one-line caption (or fallback)
|
130 |
try:
|
131 |
-
|
132 |
-
except
|
133 |
-
|
134 |
-
descs.append(f"{img_names[idx]}: {
|
135 |
metas.append({"image": image_to_bytes(img)})
|
|
|
|
|
|
|
136 |
|
137 |
-
|
138 |
-
ids=[str(i) for i in range(len(images))],
|
139 |
-
documents=descs,
|
140 |
-
metadatas=metas,
|
141 |
-
)
|
142 |
-
|
143 |
-
# ——— 4) Chunk & add text ———————————————
|
144 |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
145 |
docs = splitter.create_documents([text])
|
146 |
-
text_col.add(
|
147 |
-
|
148 |
-
documents=[d.page_content for d in docs],
|
149 |
-
)
|
150 |
|
151 |
return client
|
152 |
|
153 |
|
154 |
|
|
|
155 |
# Text extraction
|
156 |
def result_to_text(result, as_text=False):
|
157 |
pages = []
|
@@ -169,18 +169,12 @@ OCR_CHOICES = {
|
|
169 |
def extract_data_from_pdfs(
|
170 |
docs: list[str],
|
171 |
session: dict,
|
172 |
-
include_images: str,
|
173 |
-
do_ocr: str,
|
174 |
-
ocr_choice: str,
|
175 |
-
vlm_choice: str,
|
176 |
progress=gr.Progress()
|
177 |
):
|
178 |
-
"""
|
179 |
-
1) (Optional) OCR setup
|
180 |
-
2) Vision+Lang model setup & monkey-patch get_image_description
|
181 |
-
3) Extract text & images
|
182 |
-
4) Build and stash vector DB in CURRENT_VDB
|
183 |
-
"""
|
184 |
if not docs:
|
185 |
raise gr.Error("No documents to process")
|
186 |
|
@@ -193,60 +187,57 @@ def extract_data_from_pdfs(
|
|
193 |
|
194 |
# 2) Vision–language model
|
195 |
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
|
196 |
-
vis = (
|
197 |
-
|
198 |
-
|
199 |
-
.to("cuda")
|
200 |
-
)
|
201 |
|
202 |
-
# Monkey-patch
|
203 |
-
def describe(img
|
204 |
-
torch.cuda.empty_cache()
|
205 |
-
gc.collect()
|
206 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
207 |
-
|
208 |
-
|
209 |
-
return proc.decode(
|
210 |
|
211 |
-
global get_image_description
|
212 |
get_image_description = describe
|
213 |
|
214 |
-
#
|
215 |
progress(0.2, "Extracting text and images…")
|
216 |
all_text = ""
|
217 |
images, names = [], []
|
218 |
-
|
219 |
for path in docs:
|
220 |
if local_ocr:
|
221 |
pdf = DocumentFile.from_pdf(path)
|
222 |
res = local_ocr(pdf)
|
223 |
all_text += result_to_text(res, as_text=True) + "\n\n"
|
224 |
else:
|
225 |
-
|
226 |
-
all_text += txt + "\n\n"
|
227 |
|
228 |
if include_images == "Include Images":
|
229 |
imgs = extract_images([path])
|
230 |
images.extend(imgs)
|
231 |
names.extend([os.path.basename(path)] * len(imgs))
|
232 |
|
233 |
-
#
|
234 |
progress(0.6, "Indexing in vector DB…")
|
235 |
-
|
236 |
|
|
|
237 |
session["processed"] = True
|
|
|
238 |
sample_imgs = images[:4] if include_images == "Include Images" else []
|
239 |
|
240 |
-
# ─── return *exactly four* picklable outputs ───
|
241 |
return (
|
242 |
-
session,
|
243 |
-
all_text[:2000] + "...",
|
244 |
-
sample_imgs,
|
245 |
-
"<h3>Done!</h3>"
|
246 |
)
|
247 |
|
248 |
|
249 |
|
|
|
250 |
# Chat function
|
251 |
def conversation(
|
252 |
session: dict,
|
@@ -258,46 +249,44 @@ def conversation(
|
|
258 |
max_tok: int,
|
259 |
model_id: str
|
260 |
):
|
261 |
-
""
|
262 |
-
|
263 |
-
"""
|
264 |
-
global CURRENT_VDB
|
265 |
-
if not session.get("processed") or CURRENT_VDB is None:
|
266 |
raise gr.Error("Please extract data first")
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
img_q = img_col.query(
|
286 |
-
query_texts=[question],
|
287 |
-
n_results=int(img_ctx),
|
288 |
-
include=["metadatas", "documents"]
|
289 |
-
)
|
290 |
img_descs = img_q["documents"][0] or ["No images found"]
|
291 |
images = []
|
292 |
for meta in img_q["metadatas"][0]:
|
293 |
-
b64 = meta.get("image",
|
294 |
try:
|
295 |
images.append(Image.open(io.BytesIO(base64.b64decode(b64))))
|
296 |
except:
|
297 |
pass
|
298 |
img_desc = "\n".join(img_descs)
|
299 |
|
300 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
prompt = PromptTemplate(
|
302 |
template="""
|
303 |
Context:
|
@@ -310,34 +299,27 @@ Question:
|
|
310 |
{q}
|
311 |
|
312 |
Answer:
|
313 |
-
""",
|
314 |
-
input_variables=["text", "img_desc", "q"],
|
315 |
-
)
|
316 |
-
user_input = prompt.format(
|
317 |
-
text="\n\n".join(docs),
|
318 |
-
img_desc=img_desc,
|
319 |
-
q=question
|
320 |
)
|
|
|
321 |
|
322 |
try:
|
323 |
-
answer = llm.invoke(
|
324 |
except HfHubHTTPError as e:
|
325 |
-
if e.response.status_code
|
326 |
-
answer = f"❌ Model `{model_id}` not hosted on HF Inference API."
|
327 |
-
else:
|
328 |
-
answer = f"⚠️ HF API error: {e}"
|
329 |
except Exception as e:
|
330 |
answer = f"⚠️ Unexpected error: {e}"
|
331 |
|
332 |
new_history = history + [
|
333 |
-
{"role":
|
334 |
-
{"role":
|
335 |
]
|
336 |
return new_history, docs, images
|
337 |
|
338 |
|
339 |
|
340 |
|
|
|
341 |
# ─────────────────────────────────────────────────────────────────────────────
|
342 |
# Gradio UI
|
343 |
CSS = """
|
@@ -359,128 +341,54 @@ MODEL_OPTIONS = [
|
|
359 |
]
|
360 |
|
361 |
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
362 |
-
# State to track that extraction completed (and carry any metadata)
|
363 |
session_state = gr.State({})
|
364 |
|
365 |
-
# ─── Welcome Screen ─────────────────────────────────────────────
|
366 |
with gr.Column(visible=True) as welcome_col:
|
367 |
-
gr.Markdown(
|
368 |
-
f"<div style='text-align: center'>\n{WELCOME_INTRO}\n</div>",
|
369 |
-
elem_id="welcome_md"
|
370 |
-
)
|
371 |
start_btn = gr.Button("🚀 Start")
|
372 |
|
373 |
-
# ─── Main App (hidden until Start is clicked) ───────────────────
|
374 |
with gr.Column(visible=False) as app_col:
|
375 |
gr.Markdown("## 📚 Multimodal Chat-PDF Playground")
|
376 |
-
|
377 |
-
# We need to capture the extract‐event so we can chain the “show chat tab” later
|
378 |
extract_event = None
|
379 |
|
380 |
with gr.Tabs() as tabs:
|
381 |
-
# ── Tab 1: Upload & Extract ───────────────────────────────
|
382 |
with gr.TabItem("1. Upload & Extract"):
|
383 |
-
docs = gr.File(
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
)
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
label="Images"
|
392 |
-
)
|
393 |
-
ocr_radio = gr.Radio(
|
394 |
-
["Get Text With OCR", "Get Available Text Only"],
|
395 |
-
value="Get Available Text Only",
|
396 |
-
label="OCR"
|
397 |
-
)
|
398 |
-
ocr_dd = gr.Dropdown(
|
399 |
-
choices=list(OCR_CHOICES.keys()),
|
400 |
-
value=list(OCR_CHOICES.keys())[0],
|
401 |
-
label="OCR Model"
|
402 |
-
)
|
403 |
-
vlm_dd = gr.Dropdown(
|
404 |
-
choices=[
|
405 |
-
"llava-hf/llava-v1.6-mistral-7b-hf",
|
406 |
-
"llava-hf/llava-v1.5-mistral-7b"
|
407 |
-
],
|
408 |
-
value="llava-hf/llava-v1.6-mistral-7b-hf",
|
409 |
-
label="Vision-Language Model"
|
410 |
-
)
|
411 |
-
extract_btn = gr.Button("Extract")
|
412 |
-
preview_text = gr.Textbox(
|
413 |
-
lines=10,
|
414 |
-
label="Sample Text",
|
415 |
-
interactive=False
|
416 |
-
)
|
417 |
-
preview_img = gr.Gallery(
|
418 |
-
label="Sample Images",
|
419 |
-
rows=2,
|
420 |
-
value=[]
|
421 |
-
)
|
422 |
preview_html = gr.HTML()
|
423 |
|
424 |
-
# Kick off extraction and capture the event
|
425 |
extract_event = extract_btn.click(
|
426 |
fn=extract_data_from_pdfs,
|
427 |
-
inputs=[
|
428 |
-
|
429 |
-
session_state,
|
430 |
-
include_dd,
|
431 |
-
ocr_radio,
|
432 |
-
ocr_dd,
|
433 |
-
vlm_dd
|
434 |
-
],
|
435 |
-
outputs=[
|
436 |
-
session_state, # sets session["processed"]=True
|
437 |
-
preview_text, # shows first bits of text
|
438 |
-
preview_img, # shows first images
|
439 |
-
preview_html # shows “<h3>Done!</h3>”
|
440 |
-
]
|
441 |
)
|
442 |
|
443 |
-
# ── Tab 2: Chat (initially hidden) ──────────────────────────
|
444 |
with gr.TabItem("2. Chat", visible=False) as chat_tab:
|
445 |
with gr.Row():
|
446 |
with gr.Column(scale=3):
|
447 |
chat = gr.Chatbot(type="messages", label="Chat")
|
448 |
-
msg = gr.Textbox(
|
449 |
-
placeholder="Ask about your PDF...",
|
450 |
-
label="Your question"
|
451 |
-
)
|
452 |
send = gr.Button("Send")
|
453 |
with gr.Column(scale=1):
|
454 |
-
model_dd = gr.Dropdown(
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
)
|
459 |
-
num_ctx = gr.Slider(1, 20, value=3, label="Text Contexts")
|
460 |
-
img_ctx = gr.Slider(1, 10, value=2, label="Image Contexts")
|
461 |
-
temp = gr.Slider(0.1, 1.0, step=0.1, value=0.4, label="Temperature")
|
462 |
-
max_tok = gr.Slider(10, 1000, step=10, value=200, label="Max Tokens")
|
463 |
|
464 |
send.click(
|
465 |
fn=conversation,
|
466 |
-
inputs=[
|
467 |
-
|
468 |
-
msg,
|
469 |
-
num_ctx,
|
470 |
-
img_ctx,
|
471 |
-
chat,
|
472 |
-
temp,
|
473 |
-
max_tok,
|
474 |
-
model_dd
|
475 |
-
],
|
476 |
-
outputs=[
|
477 |
-
chat,
|
478 |
-
gr.Dataframe(), # shows retrieved text chunks
|
479 |
-
gr.Gallery(label="Relevant Images", rows=2, value=[])
|
480 |
-
]
|
481 |
)
|
482 |
|
483 |
-
#
|
484 |
extract_event.then(
|
485 |
fn=lambda: gr.update(visible=True),
|
486 |
inputs=[],
|
@@ -489,13 +397,10 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
489 |
|
490 |
gr.HTML("<center>Made with ❤️ by Zamal</center>")
|
491 |
|
492 |
-
# ─── Wire the Start button ───────────────────────────────────────
|
493 |
start_btn.click(
|
494 |
fn=lambda: (gr.update(visible=False), gr.update(visible=True)),
|
495 |
-
inputs=[],
|
496 |
outputs=[welcome_col, app_col]
|
497 |
)
|
498 |
|
499 |
if __name__ == "__main__":
|
500 |
demo.launch()
|
501 |
-
|
|
|
54 |
|
55 |
|
56 |
# Add at the top of your module, alongside your other globals
|
57 |
+
PERSIST_DIR = "./chroma_db"
|
58 |
+
if os.path.exists(PERSIST_DIR):
|
59 |
+
shutil.rmtree(PERSIST_DIR)
|
60 |
|
61 |
@spaces.GPU()
|
62 |
def get_image_description(image: Image.Image) -> str:
|
|
|
98 |
|
99 |
def get_vectordb(text: str, images: list[Image.Image], img_names: list[str]):
|
100 |
"""
|
101 |
+
Build a *persistent* ChromaDB instance on disk, with two collections:
|
102 |
• text_db (chunks of the PDF text)
|
103 |
• image_db (image descriptions + raw image bytes)
|
|
|
104 |
"""
|
105 |
+
# 1) Make or clean the on-disk folder
|
106 |
+
shutil.rmtree(PERSIST_DIR, ignore_errors=True)
|
107 |
+
os.makedirs(PERSIST_DIR, exist_ok=True)
|
108 |
+
|
109 |
+
# 2) Persistent client
|
110 |
+
client = chromadb.Client(Settings(
|
111 |
+
chroma_db_impl="duckdb+parquet",
|
112 |
+
persist_directory=PERSIST_DIR
|
113 |
+
))
|
114 |
+
|
115 |
+
# 3) Create / wipe collections
|
116 |
for col in ("text_db", "image_db"):
|
117 |
if col in [c.name for c in client.list_collections()]:
|
118 |
client.delete_collection(col)
|
119 |
|
|
|
120 |
text_col = client.get_or_create_collection(
|
121 |
name="text_db",
|
122 |
+
embedding_function=SHARED_EMB_FN
|
|
|
123 |
)
|
124 |
img_col = client.get_or_create_collection(
|
125 |
name="image_db",
|
126 |
embedding_function=SHARED_EMB_FN,
|
127 |
+
metadata={"hnsw:space": "cosine"}
|
|
|
128 |
)
|
129 |
|
130 |
+
# 4) Add images
|
131 |
if images:
|
132 |
+
descs, metas = [], []
|
|
|
133 |
for idx, img in enumerate(images):
|
|
|
134 |
try:
|
135 |
+
cap = get_image_description(img)
|
136 |
+
except:
|
137 |
+
cap = "⚠️ could not describe image"
|
138 |
+
descs.append(f"{img_names[idx]}: {cap}")
|
139 |
metas.append({"image": image_to_bytes(img)})
|
140 |
+
img_col.add(ids=[str(i) for i in range(len(images))],
|
141 |
+
documents=descs,
|
142 |
+
metadatas=metas)
|
143 |
|
144 |
+
# 5) Chunk & add text
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
146 |
docs = splitter.create_documents([text])
|
147 |
+
text_col.add(ids=[str(i) for i in range(len(docs))],
|
148 |
+
documents=[d.page_content for d in docs])
|
|
|
|
|
149 |
|
150 |
return client
|
151 |
|
152 |
|
153 |
|
154 |
+
|
155 |
# Text extraction
|
156 |
def result_to_text(result, as_text=False):
|
157 |
pages = []
|
|
|
169 |
def extract_data_from_pdfs(
|
170 |
docs: list[str],
|
171 |
session: dict,
|
172 |
+
include_images: str,
|
173 |
+
do_ocr: str,
|
174 |
+
ocr_choice: str,
|
175 |
+
vlm_choice: str,
|
176 |
progress=gr.Progress()
|
177 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
if not docs:
|
179 |
raise gr.Error("No documents to process")
|
180 |
|
|
|
187 |
|
188 |
# 2) Vision–language model
|
189 |
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
|
190 |
+
vis = (LlavaNextForConditionalGeneration
|
191 |
+
.from_pretrained(vlm_choice, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
192 |
+
.to("cuda"))
|
|
|
|
|
193 |
|
194 |
+
# 3) Monkey-patch caption fn
|
195 |
+
def describe(img):
|
196 |
+
torch.cuda.empty_cache(); gc.collect()
|
|
|
197 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
198 |
+
inp = proc(prompt, img, return_tensors="pt").to("cuda")
|
199 |
+
out = vis.generate(**inp, max_new_tokens=100)
|
200 |
+
return proc.decode(out[0], skip_special_tokens=True)
|
201 |
|
202 |
+
global get_image_description
|
203 |
get_image_description = describe
|
204 |
|
205 |
+
# 4) Extract text & images
|
206 |
progress(0.2, "Extracting text and images…")
|
207 |
all_text = ""
|
208 |
images, names = [], []
|
|
|
209 |
for path in docs:
|
210 |
if local_ocr:
|
211 |
pdf = DocumentFile.from_pdf(path)
|
212 |
res = local_ocr(pdf)
|
213 |
all_text += result_to_text(res, as_text=True) + "\n\n"
|
214 |
else:
|
215 |
+
all_text += (PdfReader(path).pages[0].extract_text() or "") + "\n\n"
|
|
|
216 |
|
217 |
if include_images == "Include Images":
|
218 |
imgs = extract_images([path])
|
219 |
images.extend(imgs)
|
220 |
names.extend([os.path.basename(path)] * len(imgs))
|
221 |
|
222 |
+
# 5) Build + persist the vectordb
|
223 |
progress(0.6, "Indexing in vector DB…")
|
224 |
+
client = get_vectordb(all_text, images, names)
|
225 |
|
226 |
+
# 6) Mark session and return UI outputs
|
227 |
session["processed"] = True
|
228 |
+
session["persist_directory"] = PERSIST_DIR
|
229 |
sample_imgs = images[:4] if include_images == "Include Images" else []
|
230 |
|
|
|
231 |
return (
|
232 |
+
session, # gr.State
|
233 |
+
all_text[:2000] + "...",
|
234 |
+
sample_imgs,
|
235 |
+
"<h3>Done!</h3>"
|
236 |
)
|
237 |
|
238 |
|
239 |
|
240 |
+
|
241 |
# Chat function
|
242 |
def conversation(
|
243 |
session: dict,
|
|
|
249 |
max_tok: int,
|
250 |
model_id: str
|
251 |
):
|
252 |
+
pd = session.get("persist_directory")
|
253 |
+
if not session.get("processed") or not pd:
|
|
|
|
|
|
|
254 |
raise gr.Error("Please extract data first")
|
255 |
|
256 |
+
# 1) Reopen the same persistent client
|
257 |
+
client = chromadb.Client(Settings(
|
258 |
+
chroma_db_impl="duckdb+parquet",
|
259 |
+
persist_directory=pd
|
260 |
+
))
|
261 |
+
|
262 |
+
# 2) Text retrieval
|
263 |
+
text_col = client.get_collection("text_db")
|
264 |
+
docs = text_col.query(query_texts=[question],
|
265 |
+
n_results=int(num_ctx),
|
266 |
+
include=["documents"])["documents"][0]
|
267 |
+
|
268 |
+
# 3) Image retrieval
|
269 |
+
img_col = client.get_collection("image_db")
|
270 |
+
img_q = img_col.query(query_texts=[question],
|
271 |
+
n_results=int(img_ctx),
|
272 |
+
include=["metadatas","documents"])
|
|
|
|
|
|
|
|
|
|
|
273 |
img_descs = img_q["documents"][0] or ["No images found"]
|
274 |
images = []
|
275 |
for meta in img_q["metadatas"][0]:
|
276 |
+
b64 = meta.get("image","")
|
277 |
try:
|
278 |
images.append(Image.open(io.BytesIO(base64.b64decode(b64))))
|
279 |
except:
|
280 |
pass
|
281 |
img_desc = "\n".join(img_descs)
|
282 |
|
283 |
+
# 4) Build prompt & call LLM
|
284 |
+
llm = HuggingFaceEndpoint(
|
285 |
+
repo_id=model_id,
|
286 |
+
temperature=temp,
|
287 |
+
max_new_tokens=max_tok,
|
288 |
+
huggingfacehub_api_token=HF_TOKEN
|
289 |
+
)
|
290 |
prompt = PromptTemplate(
|
291 |
template="""
|
292 |
Context:
|
|
|
299 |
{q}
|
300 |
|
301 |
Answer:
|
302 |
+
""", input_variables=["text","img_desc","q"]
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
)
|
304 |
+
inp = prompt.format(text="\n\n".join(docs), img_desc=img_desc, q=question)
|
305 |
|
306 |
try:
|
307 |
+
answer = llm.invoke(inp)
|
308 |
except HfHubHTTPError as e:
|
309 |
+
answer = "❌ Model not hosted" if e.response.status_code==404 else f"⚠️ HF error: {e}"
|
|
|
|
|
|
|
310 |
except Exception as e:
|
311 |
answer = f"⚠️ Unexpected error: {e}"
|
312 |
|
313 |
new_history = history + [
|
314 |
+
{"role":"user", "content":question},
|
315 |
+
{"role":"assistant","content":answer}
|
316 |
]
|
317 |
return new_history, docs, images
|
318 |
|
319 |
|
320 |
|
321 |
|
322 |
+
|
323 |
# ─────────────────────────────────────────────────────────────────────────────
|
324 |
# Gradio UI
|
325 |
CSS = """
|
|
|
341 |
]
|
342 |
|
343 |
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
|
344 |
session_state = gr.State({})
|
345 |
|
|
|
346 |
with gr.Column(visible=True) as welcome_col:
|
347 |
+
gr.Markdown(f"<div style='text-align:center'>{WELCOME_INTRO}</div>")
|
|
|
|
|
|
|
348 |
start_btn = gr.Button("🚀 Start")
|
349 |
|
|
|
350 |
with gr.Column(visible=False) as app_col:
|
351 |
gr.Markdown("## 📚 Multimodal Chat-PDF Playground")
|
|
|
|
|
352 |
extract_event = None
|
353 |
|
354 |
with gr.Tabs() as tabs:
|
|
|
355 |
with gr.TabItem("1. Upload & Extract"):
|
356 |
+
docs = gr.File(file_count="multiple", file_types=[".pdf"], label="Upload PDFs")
|
357 |
+
include_dd = gr.Radio(["Include Images","Exclude Images"],"Exclude Images","Images")
|
358 |
+
ocr_radio = gr.Radio(["Get Text With OCR","Get Available Text Only"],"Get Available Text Only","OCR")
|
359 |
+
ocr_dd = gr.Dropdown(list(OCR_CHOICES.keys()), list(OCR_CHOICES.keys())[0], "OCR Model")
|
360 |
+
vlm_dd = gr.Dropdown(["llava-hf/llava-v1.6-mistral-7b-hf","llava-hf/llava-v1.5-mistral-7b"], "llava-hf/llava-v1.6-mistral-7b-hf", "Vision-Language Model")
|
361 |
+
extract_btn = gr.Button("Extract")
|
362 |
+
preview_text = gr.Textbox(lines=10, label="Sample Text", interactive=False)
|
363 |
+
preview_img = gr.Gallery(label="Sample Images", rows=2, value=[])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
preview_html = gr.HTML()
|
365 |
|
|
|
366 |
extract_event = extract_btn.click(
|
367 |
fn=extract_data_from_pdfs,
|
368 |
+
inputs=[docs, session_state, include_dd, ocr_radio, ocr_dd, vlm_dd],
|
369 |
+
outputs=[session_state, preview_text, preview_img, preview_html]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
)
|
371 |
|
|
|
372 |
with gr.TabItem("2. Chat", visible=False) as chat_tab:
|
373 |
with gr.Row():
|
374 |
with gr.Column(scale=3):
|
375 |
chat = gr.Chatbot(type="messages", label="Chat")
|
376 |
+
msg = gr.Textbox(placeholder="Ask about your PDF...", label="Your question")
|
|
|
|
|
|
|
377 |
send = gr.Button("Send")
|
378 |
with gr.Column(scale=1):
|
379 |
+
model_dd = gr.Dropdown(MODEL_OPTIONS, MODEL_OPTIONS[0], "Choose Chat Model")
|
380 |
+
num_ctx = gr.Slider(1,20, value=3, label="Text Contexts")
|
381 |
+
img_ctx = gr.Slider(1,10, value=2, label="Image Contexts")
|
382 |
+
temp = gr.Slider(0.1,1.0, step=0.1, value=0.4, label="Temperature")
|
383 |
+
max_tok = gr.Slider(10,1000, step=10, value=200, label="Max Tokens")
|
|
|
|
|
|
|
|
|
384 |
|
385 |
send.click(
|
386 |
fn=conversation,
|
387 |
+
inputs=[session_state, msg, num_ctx, img_ctx, chat, temp, max_tok, model_dd],
|
388 |
+
outputs=[chat, gr.Dataframe(), gr.Gallery(label="Relevant Images", rows=2, value=[])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
)
|
390 |
|
391 |
+
# Unhide the Chat tab once extraction completes
|
392 |
extract_event.then(
|
393 |
fn=lambda: gr.update(visible=True),
|
394 |
inputs=[],
|
|
|
397 |
|
398 |
gr.HTML("<center>Made with ❤️ by Zamal</center>")
|
399 |
|
|
|
400 |
start_btn.click(
|
401 |
fn=lambda: (gr.update(visible=False), gr.update(visible=True)),
|
|
|
402 |
outputs=[welcome_col, app_col]
|
403 |
)
|
404 |
|
405 |
if __name__ == "__main__":
|
406 |
demo.launch()
|
|