Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -51,11 +51,19 @@ vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
|
51 |
).to("cuda")
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
54 |
@spaces.GPU()
|
55 |
def get_image_description(image: Image.Image) -> str:
|
|
|
|
|
|
|
|
|
56 |
global processor, vision_model
|
57 |
|
58 |
-
#
|
59 |
if processor is None or vision_model is None:
|
60 |
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
61 |
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
@@ -64,9 +72,9 @@ def get_image_description(image: Image.Image) -> str:
|
|
64 |
low_cpu_mem_usage=True
|
65 |
).to("cuda")
|
66 |
|
|
|
67 |
torch.cuda.empty_cache()
|
68 |
gc.collect()
|
69 |
-
|
70 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
71 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
|
72 |
output = vision_model.generate(**inputs, max_new_tokens=100)
|
@@ -166,23 +174,22 @@ def extract_data_from_pdfs(
|
|
166 |
progress=gr.Progress()
|
167 |
):
|
168 |
"""
|
169 |
-
1)
|
170 |
-
2)
|
171 |
-
3)
|
172 |
-
4)
|
173 |
"""
|
174 |
if not docs:
|
175 |
raise gr.Error("No documents to process")
|
176 |
|
177 |
-
#
|
178 |
if do_ocr == "Get Text With OCR":
|
179 |
db_m, crnn_m = OCR_CHOICES[ocr_choice]
|
180 |
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
|
181 |
else:
|
182 |
local_ocr = None
|
183 |
|
184 |
-
#
|
185 |
-
# Load processor + model *inside* the GPU worker
|
186 |
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
|
187 |
vis = (
|
188 |
LlavaNextForConditionalGeneration
|
@@ -190,25 +197,24 @@ def extract_data_from_pdfs(
|
|
190 |
.to("cuda")
|
191 |
)
|
192 |
|
193 |
-
#
|
194 |
def describe(img: Image.Image) -> str:
|
195 |
-
torch.cuda.empty_cache()
|
196 |
-
gc.collect()
|
197 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
198 |
inputs = proc(prompt, img, return_tensors="pt").to("cuda")
|
199 |
output = vis.generate(**inputs, max_new_tokens=100)
|
200 |
return proc.decode(output[0], skip_special_tokens=True)
|
201 |
|
202 |
-
global get_image_description
|
203 |
get_image_description = describe
|
204 |
|
205 |
-
#
|
206 |
progress(0.2, "Extracting text and images…")
|
207 |
all_text = ""
|
208 |
images, names = [], []
|
209 |
|
210 |
for path in docs:
|
211 |
-
# text
|
212 |
if local_ocr:
|
213 |
pdf = DocumentFile.from_pdf(path)
|
214 |
res = local_ocr(pdf)
|
@@ -217,43 +223,48 @@ def extract_data_from_pdfs(
|
|
217 |
txt = PdfReader(path).pages[0].extract_text() or ""
|
218 |
all_text += txt + "\n\n"
|
219 |
|
220 |
-
#
|
221 |
if include_images == "Include Images":
|
222 |
imgs = extract_images([path])
|
223 |
images.extend(imgs)
|
224 |
names.extend([os.path.basename(path)] * len(imgs))
|
225 |
|
226 |
-
#
|
227 |
progress(0.6, "Indexing in vector DB…")
|
228 |
-
|
229 |
|
230 |
-
# mark
|
231 |
session["processed"] = True
|
232 |
sample_imgs = images[:4] if include_images == "Include Images" else []
|
233 |
|
234 |
return (
|
235 |
-
|
236 |
-
|
237 |
-
gr.Row(visible=True),
|
238 |
all_text[:2000] + "...",
|
239 |
sample_imgs,
|
240 |
"<h3>Done!</h3>"
|
241 |
)
|
242 |
|
|
|
243 |
# Chat function
|
244 |
def conversation(
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
):
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
if
|
254 |
raise gr.Error("Please extract data first")
|
255 |
|
256 |
-
# 2) Instantiate the chosen HF endpoint
|
257 |
llm = HuggingFaceEndpoint(
|
258 |
repo_id=model_id,
|
259 |
temperature=temp,
|
@@ -261,23 +272,22 @@ def conversation(
|
|
261 |
huggingfacehub_api_token=HF_TOKEN
|
262 |
)
|
263 |
|
264 |
-
#
|
265 |
-
text_col =
|
266 |
docs = text_col.query(
|
267 |
query_texts=[question],
|
268 |
-
n_results=num_ctx,
|
269 |
include=["documents"]
|
270 |
)["documents"][0]
|
271 |
|
272 |
-
|
273 |
-
img_col = vdb.get_collection("image_db")
|
274 |
img_q = img_col.query(
|
275 |
query_texts=[question],
|
276 |
-
n_results=img_ctx,
|
277 |
include=["metadatas", "documents"]
|
278 |
)
|
279 |
-
|
280 |
-
images
|
281 |
for meta in img_q["metadatas"][0]:
|
282 |
b64 = meta.get("image", "")
|
283 |
try:
|
@@ -286,7 +296,7 @@ def conversation(
|
|
286 |
pass
|
287 |
img_desc = "\n".join(img_descs)
|
288 |
|
289 |
-
#
|
290 |
prompt = PromptTemplate(
|
291 |
template="""
|
292 |
Context:
|
@@ -302,10 +312,12 @@ Answer:
|
|
302 |
""",
|
303 |
input_variables=["text", "img_desc", "q"],
|
304 |
)
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
307 |
|
308 |
-
# 6) Call the model with error handling
|
309 |
try:
|
310 |
answer = llm.invoke(user_input)
|
311 |
except HfHubHTTPError as e:
|
@@ -316,13 +328,10 @@ Answer:
|
|
316 |
except Exception as e:
|
317 |
answer = f"⚠️ Unexpected error: {e}"
|
318 |
|
319 |
-
# 7) Append to history
|
320 |
new_history = history + [
|
321 |
-
{"role":"user", "content": question},
|
322 |
-
{"role":"assistant","content": answer}
|
323 |
]
|
324 |
-
|
325 |
-
# 8) Return updated history, docs, images
|
326 |
return new_history, docs, images
|
327 |
|
328 |
|
|
|
51 |
).to("cuda")
|
52 |
|
53 |
|
54 |
+
# Add at the top of your module, alongside your other globals
|
55 |
+
CURRENT_VDB = None
|
56 |
+
|
57 |
+
|
58 |
@spaces.GPU()
|
59 |
def get_image_description(image: Image.Image) -> str:
|
60 |
+
"""
|
61 |
+
Lazy-loads the Llava processor + model into the GPU worker,
|
62 |
+
runs captioning, and returns a one-sentence description.
|
63 |
+
"""
|
64 |
global processor, vision_model
|
65 |
|
66 |
+
# First-call: instantiate + move to CUDA
|
67 |
if processor is None or vision_model is None:
|
68 |
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
69 |
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
|
|
72 |
low_cpu_mem_usage=True
|
73 |
).to("cuda")
|
74 |
|
75 |
+
# clear and run
|
76 |
torch.cuda.empty_cache()
|
77 |
gc.collect()
|
|
|
78 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
79 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
|
80 |
output = vision_model.generate(**inputs, max_new_tokens=100)
|
|
|
174 |
progress=gr.Progress()
|
175 |
):
|
176 |
"""
|
177 |
+
1) (Optional) OCR setup
|
178 |
+
2) V+L model setup & monkey-patch get_image_description
|
179 |
+
3) Extract text and images
|
180 |
+
4) Build and store vector DB in global CURRENT_VDB
|
181 |
"""
|
182 |
if not docs:
|
183 |
raise gr.Error("No documents to process")
|
184 |
|
185 |
+
# 1) OCR instantiation if requested
|
186 |
if do_ocr == "Get Text With OCR":
|
187 |
db_m, crnn_m = OCR_CHOICES[ocr_choice]
|
188 |
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
|
189 |
else:
|
190 |
local_ocr = None
|
191 |
|
192 |
+
# 2) Vision–language model instantiation
|
|
|
193 |
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
|
194 |
vis = (
|
195 |
LlavaNextForConditionalGeneration
|
|
|
197 |
.to("cuda")
|
198 |
)
|
199 |
|
200 |
+
# Monkey-patch global captioning fn
|
201 |
def describe(img: Image.Image) -> str:
|
202 |
+
torch.cuda.empty_cache(); gc.collect()
|
|
|
203 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
204 |
inputs = proc(prompt, img, return_tensors="pt").to("cuda")
|
205 |
output = vis.generate(**inputs, max_new_tokens=100)
|
206 |
return proc.decode(output[0], skip_special_tokens=True)
|
207 |
|
208 |
+
global get_image_description, CURRENT_VDB
|
209 |
get_image_description = describe
|
210 |
|
211 |
+
# 3) Extract text & images
|
212 |
progress(0.2, "Extracting text and images…")
|
213 |
all_text = ""
|
214 |
images, names = [], []
|
215 |
|
216 |
for path in docs:
|
217 |
+
# text
|
218 |
if local_ocr:
|
219 |
pdf = DocumentFile.from_pdf(path)
|
220 |
res = local_ocr(pdf)
|
|
|
223 |
txt = PdfReader(path).pages[0].extract_text() or ""
|
224 |
all_text += txt + "\n\n"
|
225 |
|
226 |
+
# images
|
227 |
if include_images == "Include Images":
|
228 |
imgs = extract_images([path])
|
229 |
images.extend(imgs)
|
230 |
names.extend([os.path.basename(path)] * len(imgs))
|
231 |
|
232 |
+
# 4) Build and stash the vector DB
|
233 |
progress(0.6, "Indexing in vector DB…")
|
234 |
+
CURRENT_VDB = get_vectordb(all_text, images, names)
|
235 |
|
236 |
+
# mark done & return only picklable outputs
|
237 |
session["processed"] = True
|
238 |
sample_imgs = images[:4] if include_images == "Include Images" else []
|
239 |
|
240 |
return (
|
241 |
+
session, # gr.State for “processed”
|
242 |
+
gr.Row(visible=True), # to un‐hide your chat UI
|
|
|
243 |
all_text[:2000] + "...",
|
244 |
sample_imgs,
|
245 |
"<h3>Done!</h3>"
|
246 |
)
|
247 |
|
248 |
+
|
249 |
# Chat function
|
250 |
def conversation(
|
251 |
+
session: dict,
|
252 |
+
question: str,
|
253 |
+
num_ctx: int,
|
254 |
+
img_ctx: int,
|
255 |
+
history: list,
|
256 |
+
temp: float,
|
257 |
+
max_tok: int,
|
258 |
+
model_id: str
|
259 |
):
|
260 |
+
"""
|
261 |
+
Pulls CURRENT_VDB from module global, runs text+image retrieval,
|
262 |
+
calls the HF endpoint, and returns updated chat history.
|
263 |
+
"""
|
264 |
+
global CURRENT_VDB
|
265 |
+
if not session.get("processed") or CURRENT_VDB is None:
|
266 |
raise gr.Error("Please extract data first")
|
267 |
|
|
|
268 |
llm = HuggingFaceEndpoint(
|
269 |
repo_id=model_id,
|
270 |
temperature=temp,
|
|
|
272 |
huggingfacehub_api_token=HF_TOKEN
|
273 |
)
|
274 |
|
275 |
+
# Retrieve top‐k text & images
|
276 |
+
text_col = CURRENT_VDB.get_collection("text_db")
|
277 |
docs = text_col.query(
|
278 |
query_texts=[question],
|
279 |
+
n_results=int(num_ctx),
|
280 |
include=["documents"]
|
281 |
)["documents"][0]
|
282 |
|
283 |
+
img_col = CURRENT_VDB.get_collection("image_db")
|
|
|
284 |
img_q = img_col.query(
|
285 |
query_texts=[question],
|
286 |
+
n_results=int(img_ctx),
|
287 |
include=["metadatas", "documents"]
|
288 |
)
|
289 |
+
img_descs = img_q["documents"][0] or ["No images found"]
|
290 |
+
images = []
|
291 |
for meta in img_q["metadatas"][0]:
|
292 |
b64 = meta.get("image", "")
|
293 |
try:
|
|
|
296 |
pass
|
297 |
img_desc = "\n".join(img_descs)
|
298 |
|
299 |
+
# Build and call prompt
|
300 |
prompt = PromptTemplate(
|
301 |
template="""
|
302 |
Context:
|
|
|
312 |
""",
|
313 |
input_variables=["text", "img_desc", "q"],
|
314 |
)
|
315 |
+
user_input = prompt.format(
|
316 |
+
text="\n\n".join(docs),
|
317 |
+
img_desc=img_desc,
|
318 |
+
q=question
|
319 |
+
)
|
320 |
|
|
|
321 |
try:
|
322 |
answer = llm.invoke(user_input)
|
323 |
except HfHubHTTPError as e:
|
|
|
328 |
except Exception as e:
|
329 |
answer = f"⚠️ Unexpected error: {e}"
|
330 |
|
|
|
331 |
new_history = history + [
|
332 |
+
{"role": "user", "content": question},
|
333 |
+
{"role": "assistant", "content": answer}
|
334 |
]
|
|
|
|
|
335 |
return new_history, docs, images
|
336 |
|
337 |
|