demo_space1 / preprocess /openpose /run_openpose.py
zen-vton's picture
Update preprocess/openpose/run_openpose.py
991ad36 verified
# import pdb
# import config
# from pathlib import Path
# import sys
# PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
# sys.path.insert(0, str(PROJECT_ROOT))
# import os
# import cv2
# import einops
# import numpy as np
# import random
# import time
# import json
# # from pytorch_lightning import seed_everything
# from preprocess.openpose.annotator.util import resize_image, HWC3
# from preprocess.openpose.annotator.openpose import OpenposeDetector
# import argparse
# from PIL import Image
# import torch
# import pdb
# # os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
# class OpenPose:
# def __init__(self, gpu_id: int):
# # self.gpu_id = gpu_id
# # torch.cuda.set_device(gpu_id)
# self.preprocessor = OpenposeDetector()
# def __call__(self, input_image, resolution=384):
# # torch.cuda.set_device(self.gpu_id)
# if isinstance(input_image, Image.Image):
# input_image = np.asarray(input_image)
# elif type(input_image) == str:
# input_image = np.asarray(Image.open(input_image))
# else:
# raise ValueError
# with torch.no_grad():
# input_image = HWC3(input_image)
# input_image = resize_image(input_image, resolution)
# H, W, C = input_image.shape
# assert (H == 512 and W == 384), 'Incorrect input image shape'
# pose, detected_map = self.preprocessor(input_image, hand_and_face=False)
# candidate = pose['bodies']['candidate']
# subset = pose['bodies']['subset'][0][:18]
# for i in range(18):
# if subset[i] == -1:
# candidate.insert(i, [0, 0])
# for j in range(i, 18):
# if(subset[j]) != -1:
# subset[j] += 1
# elif subset[i] != i:
# candidate.pop(i)
# for j in range(i, 18):
# if(subset[j]) != -1:
# subset[j] -= 1
# candidate = candidate[:18]
# for i in range(18):
# candidate[i][0] *= 384
# candidate[i][1] *= 512
# keypoints = {"pose_keypoints_2d": candidate}
# # with open("/home/aigc/ProjectVTON/OpenPose/keypoints/keypoints.json", "w") as f:
# # json.dump(keypoints, f)
# #
# # # print(candidate)
# # output_image = cv2.resize(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB), (768, 1024))
# # cv2.imwrite('/home/aigc/ProjectVTON/OpenPose/keypoints/out_pose.jpg', output_image)
# return keypoints
# if __name__ == '__main__':
# model = OpenPose()
# model('./images/bad_model.jpg')
#sample
from pathlib import Path
import sys
import numpy as np
from PIL import Image
import torch
from preprocess.openpose.annotator.util import resize_image, HWC3
from preprocess.openpose.annotator.openpose import OpenposeDetector
class OpenPose:
def __init__(self, gpu_id: int = 0):
self.preprocessor = OpenposeDetector()
def __call__(self, input_image, resolution=384):
if isinstance(input_image, Image.Image):
input_image = np.asarray(input_image)
elif isinstance(input_image, str):
input_image = np.asarray(Image.open(input_image))
else:
raise ValueError("Invalid image input format.")
with torch.no_grad():
input_image = HWC3(input_image)
input_image = resize_image(input_image, resolution)
H, W, C = input_image.shape
assert (H == 512 and W == 384), 'Incorrect input image shape'
pose, detected_map = self.preprocessor(input_image, hand_and_face=False)
candidate = pose['bodies']['candidate']
subset = pose['bodies']['subset'][0][:18]
for i in range(18):
if subset[i] == -1:
candidate.insert(i, [0, 0])
for j in range(i, 18):
if(subset[j]) != -1:
subset[j] += 1
elif subset[i] != i:
candidate.pop(i)
for j in range(i, 18):
if(subset[j]) != -1:
subset[j] -= 1
candidate = candidate[:18]
for i in range(18):
candidate[i][0] *= 384
candidate[i][1] *= 512
keypoints = {"pose_keypoints_2d": candidate}
return keypoints