Spaces:
Build error
Build error
# import pdb | |
# import config | |
# from pathlib import Path | |
# import sys | |
# PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() | |
# sys.path.insert(0, str(PROJECT_ROOT)) | |
# import os | |
# import cv2 | |
# import einops | |
# import numpy as np | |
# import random | |
# import time | |
# import json | |
# # from pytorch_lightning import seed_everything | |
# from preprocess.openpose.annotator.util import resize_image, HWC3 | |
# from preprocess.openpose.annotator.openpose import OpenposeDetector | |
# import argparse | |
# from PIL import Image | |
# import torch | |
# import pdb | |
# # os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3' | |
# class OpenPose: | |
# def __init__(self, gpu_id: int): | |
# # self.gpu_id = gpu_id | |
# # torch.cuda.set_device(gpu_id) | |
# self.preprocessor = OpenposeDetector() | |
# def __call__(self, input_image, resolution=384): | |
# # torch.cuda.set_device(self.gpu_id) | |
# if isinstance(input_image, Image.Image): | |
# input_image = np.asarray(input_image) | |
# elif type(input_image) == str: | |
# input_image = np.asarray(Image.open(input_image)) | |
# else: | |
# raise ValueError | |
# with torch.no_grad(): | |
# input_image = HWC3(input_image) | |
# input_image = resize_image(input_image, resolution) | |
# H, W, C = input_image.shape | |
# assert (H == 512 and W == 384), 'Incorrect input image shape' | |
# pose, detected_map = self.preprocessor(input_image, hand_and_face=False) | |
# candidate = pose['bodies']['candidate'] | |
# subset = pose['bodies']['subset'][0][:18] | |
# for i in range(18): | |
# if subset[i] == -1: | |
# candidate.insert(i, [0, 0]) | |
# for j in range(i, 18): | |
# if(subset[j]) != -1: | |
# subset[j] += 1 | |
# elif subset[i] != i: | |
# candidate.pop(i) | |
# for j in range(i, 18): | |
# if(subset[j]) != -1: | |
# subset[j] -= 1 | |
# candidate = candidate[:18] | |
# for i in range(18): | |
# candidate[i][0] *= 384 | |
# candidate[i][1] *= 512 | |
# keypoints = {"pose_keypoints_2d": candidate} | |
# # with open("/home/aigc/ProjectVTON/OpenPose/keypoints/keypoints.json", "w") as f: | |
# # json.dump(keypoints, f) | |
# # | |
# # # print(candidate) | |
# # output_image = cv2.resize(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB), (768, 1024)) | |
# # cv2.imwrite('/home/aigc/ProjectVTON/OpenPose/keypoints/out_pose.jpg', output_image) | |
# return keypoints | |
# if __name__ == '__main__': | |
# model = OpenPose() | |
# model('./images/bad_model.jpg') | |
#sample | |
from pathlib import Path | |
import sys | |
import numpy as np | |
from PIL import Image | |
import torch | |
from preprocess.openpose.annotator.util import resize_image, HWC3 | |
from preprocess.openpose.annotator.openpose import OpenposeDetector | |
class OpenPose: | |
def __init__(self, gpu_id: int = 0): | |
self.preprocessor = OpenposeDetector() | |
def __call__(self, input_image, resolution=384): | |
if isinstance(input_image, Image.Image): | |
input_image = np.asarray(input_image) | |
elif isinstance(input_image, str): | |
input_image = np.asarray(Image.open(input_image)) | |
else: | |
raise ValueError("Invalid image input format.") | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
input_image = resize_image(input_image, resolution) | |
H, W, C = input_image.shape | |
assert (H == 512 and W == 384), 'Incorrect input image shape' | |
pose, detected_map = self.preprocessor(input_image, hand_and_face=False) | |
candidate = pose['bodies']['candidate'] | |
subset = pose['bodies']['subset'][0][:18] | |
for i in range(18): | |
if subset[i] == -1: | |
candidate.insert(i, [0, 0]) | |
for j in range(i, 18): | |
if(subset[j]) != -1: | |
subset[j] += 1 | |
elif subset[i] != i: | |
candidate.pop(i) | |
for j in range(i, 18): | |
if(subset[j]) != -1: | |
subset[j] -= 1 | |
candidate = candidate[:18] | |
for i in range(18): | |
candidate[i][0] *= 384 | |
candidate[i][1] *= 512 | |
keypoints = {"pose_keypoints_2d": candidate} | |
return keypoints | |