File size: 44,009 Bytes
91126af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
import os
from collections import OrderedDict
from typing import Tuple, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch import nn, einsum
from torch.utils.checkpoint import checkpoint

from einops import rearrange, repeat

from inspect import isfunction
try:
    from flash_attn import flash_attn_qkvpacked_func, flash_attn_func, flash_attn_varlen_qkvpacked_func
    from flash_attn.bert_padding import unpad_input, pad_input
except:
    flash_attn_qkvpacked_func, flash_attn_func, flash_attn_varlen_qkvpacked_func = None, None, None
    unpad_input, pad_input = None, None
from .x_transformer import AttentionLayers, BasicEncoder
import math



def _init_weights(module):
    if isinstance(module, nn.Linear):
        torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
        if module.bias is not None:
            torch.nn.init.zeros_(module.bias)

def exists(val):
    return val is not None

def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d

def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module

# Copy from CLIP GitHub
class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)

class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)

def modulate(x, shift, scale):
    # from https://github.com/facebookresearch/DiT/blob/796c29e532f47bba17c5b9c5eb39b9354b8b7c64/models.py#L19
    return x * (1 + scale.unsqueeze(0)) + shift.unsqueeze(0)


class MultiheadAttentionFlashV2(nn.Module):
    def __init__(self, embed_dim, n_head, bias=False, shift_group=None, qkv_packed=False, window_size=None):
        super().__init__()

        self.head_dim = embed_dim// n_head
        self.embed_dim = embed_dim
        self.n_head = n_head
        self.to_q = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.to_k = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.to_v = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.shift_group = shift_group
        self.qkv_packed = qkv_packed
        self.window_size = window_size


    def forward(self, q, k, v, dropout_p=0.0, softmax_scale=None, causal=False, need_weights=False, attn_mask=None):
        q = q.permute(1, 0, 2)
        k = k.permute(1, 0, 2)
        v = v.permute(1, 0, 2)

        h = self.n_head
        q = self.to_q(q)
        k = self.to_k(k)
        v = self.to_v(v)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q, k, v))
        # print(q.dtype, k.dtype, v.dtype)
        if self.qkv_packed:
            bsz, q_len, heads, head_dim = q.shape
            group_size = self.shift_group
            nheads = self.n_head
            qkv = torch.stack([q,k,v], dim=2)
            qkv = qkv.reshape(bsz, q_len, 3, 2, nheads // 2, self.head_dim).permute(0, 3, 1, 2, 4, 5).reshape(bsz * 2,
                                                                                                              q_len, 3,
                                                                                                              nheads // 2,
                                                                                                              self.head_dim)

            x = rearrange(qkv, "b s three h d -> b s (three h d)")
            key_padding_mask = torch.ones(x.shape[0], x.shape[1], device=x.device, dtype=x.dtype)
            x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
            cu_q_len_tmp = torch.arange(0, max_s, group_size, device=key_padding_mask.device, dtype=cu_q_lens.dtype)
            cu_q_len_tmp2 = cu_q_len_tmp + group_size // 2
            cu_q_len_tmp2[cu_q_len_tmp2 >= max_s] = torch.iinfo(cu_q_len_tmp2.dtype).min
            cu_q_len_tmp = torch.stack([cu_q_len_tmp, cu_q_len_tmp2]).repeat(bsz, 1) + cu_q_lens[:-1].unsqueeze(-1)
            cu_q_lens = torch.cat([cu_q_len_tmp, cu_q_lens[1:].unsqueeze(-1)], dim=-1).view(-1)
            cu_q_lens = cu_q_lens[cu_q_lens >= 0]
            x_unpad = rearrange(
                x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads // 2
            )
            output_unpad = flash_attn_varlen_qkvpacked_func(
                x_unpad, cu_q_lens, group_size, 0.0, softmax_scale=None, causal=False,
            )
            output = rearrange(
                   pad_input(
                       rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz * 2, q_len
                   ),
                   "b s (h d) -> b s h d",
                   h=nheads // 2,
               )
            r_out = output.reshape(bsz, 2, q_len, nheads // 2, self.head_dim).transpose(1, 2).reshape(bsz, q_len, nheads,
                                                                                               self.head_dim)
        else:
            if self.shift_group is not None:
                 bsz, q_len, heads, head_dim = q.shape
                 assert q_len % self.shift_group == 0

                 def shift(qkv, bsz, q_len, group_size, num_heads, head_dim):
                     qkv[:, num_heads // 2:] = qkv[:, num_heads // 2:].roll(-group_size // 2, dims=2)
                     qkv = qkv.transpose(1, 2).reshape(bsz * (q_len // group_size), group_size, num_heads, head_dim).transpose(1, 2)
                     return qkv

                 q = shift(q, bsz, q_len, self.shift_group, h, self.head_dim)
                 k = shift(k, bsz, q_len, self.shift_group, h, self.head_dim)
                 v = shift(v, bsz, q_len, self.shift_group, h, self.head_dim)
            if self.window_size:
                out = flash_attn_func(q, k, v, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=causal, window_size=(self.window_size // 2, self.window_size // 2))
            else:
                out = flash_attn_func(q, k, v, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=causal)

            if self.shift_group is not None:
                out = out.transpose(1, 2).contiguous()
                out = rearrange(out, '(b l) g h d -> b (l g) h d', l=q_len // self.shift_group)
                r_out = out.clone()
                r_out[:, :, h//2:] = r_out[:, :, h//2:].roll(h//2, dims=1)    
            else:
                r_out = out

        r_out = rearrange(r_out, 'b n h d -> b n (h d)')
        r_out = r_out.permute(1, 0, 2)
        return (r_out,)

class PSUpsamplerBlock(nn.Module):
    def __init__(self, d_model: int, d_model_out: int, scale_factor: int):
        super().__init__()

        # self.mlp = nn.Sequential(OrderedDict([
        #     ("c_fc", nn.Linear(d_model, d_model_out * scale_factor**2)),
        #     ("gelu", QuickGELU()),
        #     ("c_proj", nn.Linear(d_model_out * scale_factor**2, d_model_out * scale_factor**2))
        # ]))
        # self.ln_2 = LayerNorm(d_model)
        self.scale_factor = scale_factor
        self.d_model_out = d_model_out
        self.residual_fc = nn.Linear(d_model, d_model_out * (scale_factor**2))
        self.pixelshuffle = nn.PixelShuffle(scale_factor)

    def forward(self, x: torch.Tensor):
        # mlp block
        # x.shape b, l, d
        # y = self.ln_2(x)
        # y = self.mlp(y)
        # For here we have two cases:
        # 1. If we have a modulation function for the MLP, we use it to modulate the output of the MLP
        # 2. If we don't have a modulation function for the MLP, we use the modulation function for the attention
        x = self.residual_fc(x)# .repeat(1, 1, self.scale_factor**2)
        # x = x + y
        bs, l, c = x.shape
        resolution = int(np.sqrt(l))
        x = x.permute(0, 2, 1).reshape(bs, c, resolution, resolution)
        x = self.pixelshuffle(x)
        x = x.reshape(bs, self.d_model_out, resolution*self.scale_factor*resolution*self.scale_factor)
        x = x.permute(0, 2, 1)
        # x = rearrange(x, 'b l (s c) -> b (l s) c', s=self.scale_factor**2)
        return x

class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, 
            n_head: int, 
            attn_mask: torch.Tensor = None, 
            modulate_feature_size: int = None, 
            modulate_act_type: str = 'gelu', 
            cross_att: bool = None, 
            flash_v2: bool = None, 
            qkv_packed: bool = None, 
            shift_group: int = None,
            window_size: int = None,):
        super().__init__()

        print('vit flashv2', flash_v2)

        self.flash_v2 = flash_v2
        self.window_size = window_size
        if self.flash_v2:
            self.attn = MultiheadAttentionFlashV2(d_model, n_head, shift_group=shift_group, qkv_packed=qkv_packed, window_size=window_size)
        else:
            self.attn = nn.MultiheadAttention(d_model, n_head)

        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask
        self.window_size = window_size

        if modulate_feature_size is not None:
            act_dict = {'gelu': QuickGELU,
                    'silu': nn.SiLU}
            self.modulation_fn = nn.Sequential(
                LayerNorm(modulate_feature_size),
                act_dict[modulate_act_type](),
                nn.Linear(modulate_feature_size, 3 * d_model, bias=True)
            )
            self.mlp_modulation_fn = nn.Sequential(
                LayerNorm(modulate_feature_size),
                act_dict[modulate_act_type](),
                nn.Linear(modulate_feature_size, 3 * d_model, bias=True)
            )
        else:
            self.modulation_fn = None
            self.mlp_modulation_fn = None

        self.cross_att = cross_att
        if self.cross_att:
            self.cross_att = CrossAttention(query_dim=d_model, context_dim=d_model,
                                    heads=n_head, dim_head=int(d_model//n_head), dropout=0)    
            self.ln_1_5 = LayerNorm(d_model)

    def attention(self, x: torch.Tensor, index):
        if self.attn_mask is not None:
            self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device)
            length = x.shape[0]
            attn_mask = self.attn_mask[:length, :length]
        else:
            attn_mask = None
        if self.window_size is not None:
            x = x.permute(1, 0, 2)
            b, l, c = x.shape
            # print(x.shape)
            assert l % self.window_size == 0
            if index % 2 == 0:
                x = rearrange(x, 'b (p w) c -> (b p) w c', w=self.window_size)
                x = x.permute(1, 0, 2) # w, bp, c
                x = self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] 
                x = x.permute(1, 0, 2) # bp, w, c
                x = rearrange(x, '(b l) w c -> b (l w) c', l=l//self.window_size, w=self.window_size)
                x = x.permute(1, 0, 2) # w, bp, c
            else:
                x = torch.roll(x, shifts=self.window_size//2, dims=1)
                x = rearrange(x, 'b (p w) c -> (b p) w c', w=self.window_size)
                x = x.permute(1, 0, 2) # w, bp, c
                x = self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] 
                x = x.permute(1, 0, 2) # w, bp, c
                x = rearrange(x, '(b l) w c -> b (l w) c', l=l//self.window_size, w=self.window_size)
                x = torch.roll(x, shifts=-self.window_size//2, dims=1)
                x = x.permute(1, 0, 2)
        else:
            x = self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]

        return x

    def forward(self, x: torch.Tensor, modulation: torch.Tensor = None, context: torch.Tensor = None, index=None):
        # self attention block
        y = self.ln_1(x)
        if self.modulation_fn is not None:
            shift, scale, gate = self.modulation_fn(modulation).chunk(3, dim=1)
            y = modulate(y, shift, scale)
        y = self.attention(y, index)
        # If we have modulation func for mlp as well, we will just use the gate for the attention
        if self.modulation_fn is not None and self.mlp_modulation_fn is not None:
            y = y * gate.unsqueeze(0)
        x = x + y

        # cross attention block
        if self.cross_att:
            y = self.cross_att(self.ln_1_5(x), context=context) 
            # print(y.mean().item())
            x = x + y

        # mlp block
        y = self.ln_2(x)
        if self.mlp_modulation_fn is not None:
            shift, scale, gate = self.mlp_modulation_fn(modulation).chunk(3, dim=1)
            y = modulate(y, shift, scale)
        y = self.mlp(y)
        # For here we have two cases:
        # 1. If we have a modulation function for the MLP, we use it to modulate the output of the MLP
        # 2. If we don't have a modulation function for the MLP, we use the modulation function for the attention
        if self.modulation_fn is not None:
            y = y * gate.unsqueeze(0)
        x = x + y

        return x


class Transformer(nn.Module):
    def __init__(self, 
            width: int, 
            layers: int, 
            heads: int, 
            attn_mask: torch.Tensor = None, 
            modulate_feature_size: int = None, 
            modulate_act_type: str = 'gelu', 
            cross_att_layers: int = 0, 
            return_all_layers=False, 
            flash_v2=True, 
            qkv_packed=False,
            shift_group=None,
            window_size=None):

        super().__init__()
        self.width = width
        self.layers = layers

        blocks = []
        for _ in range(layers):
            layer = ResidualAttentionBlock(width, 
                        heads, 
                        attn_mask, 
                        modulate_feature_size=modulate_feature_size, 
                        modulate_act_type=modulate_act_type, 
                        cross_att = (_ + cross_att_layers)>=layers, 
                        flash_v2=flash_v2, 
                        qkv_packed=qkv_packed,
                        shift_group=shift_group,
                        window_size=window_size) 
            blocks.append(layer)

        self.resblocks = nn.Sequential(*blocks)

        self.grad_checkpointing = False
        self.return_all_layers = return_all_layers 
        self.flash_v2 = flash_v2

    def set_grad_checkpointing(self, flag=True):
        self.grad_checkpointing = flag

    def forward(self, 
            x: torch.Tensor, 
            modulation: torch.Tensor = None, 
            context: torch.Tensor = None, 
            additional_residuals = None):

        all_x = []
        if additional_residuals is not None:
            assert len(additional_residuals) == self.layers
        for res_i, module in enumerate(self.resblocks):
            if self.grad_checkpointing:
                # print("Grad checkpointing")
                x = checkpoint(module, x, modulation, context, res_i)
            else:
                x = module(x, modulation, context, res_i)
            if additional_residuals is not None:
                add_res = additional_residuals[res_i]
                x[:, :add_res.shape[1]] = x[:, :add_res.shape[1]] + add_res
            all_x.append(x)
        if self.return_all_layers:
            return all_x
        else:
            return x

class GaussianUpsampler(nn.Module):
    def __init__(self, width,
                 up_ratio,
                 ch_decay=1,
                 low_channels=64,
                 window_size=False,
                 with_additional_inputs=False):

        super().__init__()
        self.up_ratio = up_ratio
        self.low_channels = low_channels
        self.window_size = window_size
        self.base_width = width
        self.with_additional_inputs = with_additional_inputs
        for res_log2 in range(int(np.log2(up_ratio))):
            _width = width
            width = max(width // ch_decay, 64)
            heads = int(width / 64)
            width = heads * 64
            if self.with_additional_inputs: 
                self.add_module(f'upsampler_{res_log2}', PSUpsamplerBlock(_width+self.base_width, width, 2))
            else:
                self.add_module(f'upsampler_{res_log2}', PSUpsamplerBlock(_width, width, 2))
            encoder = Transformer(width, 2, heads,
                                  modulate_feature_size=None,
                                  modulate_act_type=None,
                                  cross_att_layers=0,
                                  return_all_layers=False,
                                  flash_v2=False,
                                  qkv_packed=False,
                                  shift_group=False,
                                  window_size=window_size)
            self.add_module(f'attention_{res_log2}', encoder)
        self.out_channels = width
        self.ln_post = LayerNorm(width)

    def forward(self, x, additional_inputs=None):
        if self.with_additional_inputs:
            assert len(additional_inputs) == int(np.log2(self.up_ratio))
        for res_log2 in range(int(np.log2(self.up_ratio))):
            if self.with_additional_inputs:
                add_input = additional_inputs[res_log2]
                scale = x.shape[1] // add_input.shape[1] 
                add_input = add_input.repeat_interleave(scale, 1)
                x = torch.cat([x, add_input], dim=2)
            x = getattr(self, f'upsampler_{res_log2}')(x)
            x = x.permute(1, 0, 2)
            x = getattr(self, f'attention_{res_log2}')(x)
            x = x.permute(1, 0, 2)
        x = self.ln_post(x)
        return x



class HyperGaussianUpsampler(nn.Module):
    def __init__(self, width,
                 resolution,
                 up_ratio,
                 ch_decay=1,
                 window_size=False,
                 with_additional_inputs=False,
                 upsampler_kwargs={}):

        super().__init__()
        self.up_ratio = up_ratio
        self.window_size = window_size
        self.base_width = width
        self.with_additional_inputs = with_additional_inputs
        self.resolution = resolution
        for res_log2 in range(int(np.log2(up_ratio))):
            if res_log2 == 0:
                _width = width
                width = width
                heads = int(width / 64)
                width = heads * 64
                if self.with_additional_inputs: 
                    self.add_module(f'upsampler_{res_log2}', PSUpsamplerBlock(_width+self.base_width, width, 2))
                else:
                    self.add_module(f'upsampler_{res_log2}', PSUpsamplerBlock(_width, width, 2))
                encoder = Transformer(width, 2, heads,
                                    modulate_feature_size=None,
                                    modulate_act_type=None,
                                    cross_att_layers=0,
                                    return_all_layers=False,
                                    flash_v2=False,
                                    qkv_packed=False,
                                    shift_group=False,
                                    window_size=window_size)
                self.add_module(f'attention_{res_log2}', encoder)
                self.resolution = self.resolution * 2
            else:
                self.resolution = self.resolution * 2
                self.add_module(f'upsample_{res_log2}',
                                UpsamplerLayers_conv(in_channels=width,
                                                     out_channels=width,
                                                     resolution=self.resolution,
                                                     conv_block_type = 'convnext',
                                                     **upsampler_kwargs))
        self.out_channels = width
        # self.ln_post = LayerNorm(width)
        self.ln_post = LayerNorm([self.resolution, self.resolution, width])

    def forward(self, x, additional_inputs=None):
        if self.with_additional_inputs:
            assert len(additional_inputs) == int(np.log2(self.up_ratio))
        for res_log2 in range(int(np.log2(self.up_ratio))):
            if res_log2 == 0:
                if self.with_additional_inputs:
                    add_input = additional_inputs[res_log2]
                    scale = x.shape[1] // add_input.shape[1] 
                    add_input = add_input.repeat_interleave(scale, 1)
                    x = torch.cat([x, add_input], dim=2)
                x = getattr(self, f'upsampler_{res_log2}')(x)
                x = x.permute(1, 0, 2)
                x = getattr(self, f'attention_{res_log2}')(x)
                x = x.permute(1, 0, 2)
                x = x.reshape(x.shape[0], int(math.sqrt(x.shape[1])), int(math.sqrt(x.shape[1])), -1).permute(0, 3, 1, 2)
            else:
                x = getattr(self, f'upsample_{res_log2}')(x)
        x = self.ln_post(x.permute(0, 2, 3, 1))
        return x

class VisionTransformer(nn.Module):
    def __init__(self, 
                 # transformer params
                 in_channels: int, 
                 patch_size: int, 
                 width: int, 
                 layers: int, 
                 heads: int, 
                 weight: str = None,
                 encode_layers: int = 0,
                 shift_group = False,
                 flash_v2 = False,
                 qkv_packed = False,
                 window_size = False,
                 use_pe = False,
                 # modualtion params 
                 modulate_feature_size: int = None, 
                 modulate_act_type: str = 'gelu', 
                 # camera condition
                 camera_condition: str = 'plucker',
                 # init params
                 disable_dino=False,
                 error_weight_init_mode='mean', 
                 # other params
                 add_zero_conv=False, 
                 return_all_layers=False, 
                 disable_post_ln=False,
                 rope=None):
        super().__init__()
        self.patch_size = patch_size
        self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
        self.use_pe = use_pe
        self.rope = rope
        self.disable_dino = disable_dino
        # if not self.disable_dino:
        #     scale = width ** -0.5
        #     self.class_embedding = nn.Parameter(scale * torch.randn(width))
        #     self.positional_embedding = nn.Parameter(scale * torch.randn((input_res// patch_size) ** 2 + 1, width))
        # else:
        #     if self.use_pe:
        # self.positional_embedding = nn.Parameter(torch.zeros(1, (input_res// patch_size) ** 2, width))
        # nn.init.trunc_normal_(self.positional_embedding, std=0.02)
        self.ln_pre = LayerNorm(width)
        self.add_zero_conv = add_zero_conv
        self.return_all_layers = return_all_layers
        self.disable_post_ln = disable_post_ln
        self.flash_v2 = flash_v2
        self.qkv_packed = qkv_packed

        self.camera_condition = camera_condition
        if self.camera_condition == 'plucker': assert modulate_feature_size is None

        if self.add_zero_conv:
            assert self.return_all_layers
            self.zero_convs = nn.ModuleList([zero_module(nn.Conv1d(in_channels=width, out_channels=width, kernel_size=1, stride=1, bias=True)) for _ in range(layers)])

        self.encode_layers = encode_layers
        if self.encode_layers > 0:
            self.encoder = Transformer(width, encode_layers, heads, 
                                       modulate_feature_size=modulate_feature_size, 
                                       modulate_act_type=modulate_act_type, 
                                       cross_att_layers=0, 
                                       return_all_layers=return_all_layers, 
                                       flash_v2=flash_v2, 
                                       qkv_packed=qkv_packed,
                                       shift_group=shift_group,
                                       window_size=window_size)
        self.transformer = Transformer(width, layers-encode_layers, heads, 
                                       modulate_feature_size=modulate_feature_size, 
                                       modulate_act_type=modulate_act_type, 
                                       cross_att_layers=0, 
                                       return_all_layers=return_all_layers, 
                                       flash_v2=flash_v2, 
                                       qkv_packed=qkv_packed,
                                       shift_group=shift_group,
                                       window_size=window_size)

        if not self.disable_post_ln:
            self.ln_post = LayerNorm(width)

        if weight is not None:
            if not self.disable_dino:
                if "clip" in weight:
                    raise NotImplementedError()
                elif weight.startswith("vit_b_16"):
                    load_timm_to_clip(self, config_name=weight, init_mode=error_weight_init_mode)
                elif weight.startswith("vit_b_8"):
                    load_timm_to_clip(self, config_name=weight, init_mode=error_weight_init_mode)
                else:
                    raise NotImplementedError()
            else:
                self.apply(_init_weights)

            # Init the weight and bias of modulation_fn to zero
            if modulate_feature_size != 0:
                for block in self.transformer.resblocks:
                    if block.modulation_fn is not None:
                        block.modulation_fn[2].weight.data.zero_()
                        block.modulation_fn[2].bias.data.zero_()
                        if block.mlp_modulation_fn is not None:
                            block.mlp_modulation_fn[2].weight.data.zero_()
                            block.mlp_modulation_fn[2].bias.data.zero_()
            for block in self.transformer.resblocks:
                if block.cross_att:
                    zero_module(block.cross_att.to_out)

    def set_grad_checkpointing(self, flag=True):
        self.transformer.set_grad_checkpointing(flag)

    def forward(self, 
            x: torch.Tensor, 
            modulation: torch.Tensor = None, 
            context: torch.Tensor = None, 
            additional_residuals=None,
            abla_crossview=False,
            pos=None):

        # image tokenization
        bs, vs = x.shape[:2]
        x = rearrange(x, 'b v c h w -> (b v) c h w')
        pos = rearrange(pos, 'b v c h -> (b v) c h')
        if self.camera_condition == 'plucker' and modulation is not None:
            modulation = rearrange(modulation, 'b v c h w -> (b v) c h w')   
            x = torch.cat([x, modulation], dim=1)
        modulation = None
        
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]
       
        # pre-normalization
        x = self.ln_pre(x)
        B, N, C = x.shape
        x = x.reshape(B, N, -1, 64)
        x = x.permute(0, 2, 1, 3)
        # print('pre x mean: ', x.mean().item())
        # print('pre x var: ', x.var().item())
        x = x + self.rope(torch.ones_like(x).to(x), pos)
        # print('x mean: ', x.mean().item())
        # print('x var: ', x.var().item())

        x = x.permute(0, 2, 1, 3)
        x = x.reshape(B, N, -1)
        # use encode to extract features
        if self.encode_layers > 0:
            x = x.permute(1, 0, 2)  # NLD -> LND
            x = self.encoder(x, modulation, context, additional_residuals=additional_residuals)
            x = x.permute(1, 0, 2)  # LND -> NLD
        if not self.disable_dino:
            x = x.permute(1, 0, 2)  # NLD -> LND
        else:    
            if not abla_crossview:
                # flatten x along the video dimension
                x = rearrange(x, '(b v) n d -> b (v n) d', v=vs)
                # print(x.shape)
                x = x.permute(1, 0, 2)  # NLD -> LND
            else:
                x = x.permute(1, 0, 2)
        x = self.transformer(x, modulation, context, additional_residuals=additional_residuals)


        if self.add_zero_conv:
            assert isinstance(x, (list, tuple))
            assert len(x) == len(self.zero_convs)
            new_x = []
            for sub_x, sub_zero_conv in zip(x, self.zero_convs):
                sub_x_out = sub_zero_conv(sub_x.permute(1, 2, 0))
                new_x.append(sub_x_out.permute(2, 0, 1))
            x = new_x

        if self.return_all_layers:
            assert isinstance(x, (list, tuple))
            if not self.disable_post_ln:
                x_final = x[-1].permute(1, 0, 2)  # LND -> NLD
                x_final = self.ln_post(x_final)
                x_final = rearrange(x_final, 'b (v n) d -> b v n d', v=vs)
            x = [s.permute(1, 0, 2) for s in x]
            x.append(x_final)
            return x

        if not self.disable_post_ln:
            x = x.permute(1, 0, 2)  # LND -> NLD
            x = self.ln_post(x)
        if not self.disable_dino:
            x = rearrange(x, '(b v) n d -> b v n d', b=bs, v=vs)
        else:
            if not abla_crossview:
                # reshape x back to video dimension
                x = rearrange(x, 'b (v n) d -> b v n d', v=vs)
            else:
                x = rearrange(x, '(b v) n d -> b v n d', v=vs)
        return x

    def extra_repr(self) -> str:
        pass


class VisionTransformer_fusion(nn.Module):
    def __init__(self, 
                 # transformer params
                 in_channels: int, 
                 patch_size: int, 
                 width: int, 
                 layers: int, 
                 heads: int, 
                 weight: str = None,
                 encode_layers: int = 0,
                 shift_group = False,
                 flash_v2 = False,
                 qkv_packed = False,
                 window_size = False,
                 use_pe = False,
                 # modualtion params 
                 modulate_feature_size: int = None, 
                 modulate_act_type: str = 'gelu', 
                 # camera condition
                 camera_condition: str = 'plucker',
                 # init params
                 disable_dino=False,
                 error_weight_init_mode='mean', 
                 # other params
                 add_zero_conv=False, 
                 return_all_layers=False, 
                 disable_post_ln=False,
                 rope=None):
        super().__init__()
        self.patch_size = patch_size
        self.use_pe = use_pe
        self.rope = rope
        self.disable_dino = disable_dino
        # if not self.disable_dino:
        #     scale = width ** -0.5
        #     self.class_embedding = nn.Parameter(scale * torch.randn(width))
        #     self.positional_embedding = nn.Parameter(scale * torch.randn((input_res// patch_size) ** 2 + 1, width))
        # else:
        #     if self.use_pe:
        # self.positional_embedding = nn.Parameter(torch.zeros(1, (input_res// patch_size) ** 2, width))
        # nn.init.trunc_normal_(self.positional_embedding, std=0.02)
        self.ln_pre = LayerNorm(width)
        self.add_zero_conv = add_zero_conv
        self.return_all_layers = return_all_layers
        self.disable_post_ln = disable_post_ln
        self.flash_v2 = flash_v2
        self.qkv_packed = qkv_packed

        self.camera_condition = camera_condition
        if self.camera_condition == 'plucker': assert modulate_feature_size is None

        if self.add_zero_conv:
            assert self.return_all_layers
            self.zero_convs = nn.ModuleList([zero_module(nn.Conv1d(in_channels=width, out_channels=width, kernel_size=1, stride=1, bias=True)) for _ in range(layers)])

        self.encode_layers = encode_layers
        if self.encode_layers > 0:
            self.encoder = Transformer(width, encode_layers, heads, 
                                       modulate_feature_size=modulate_feature_size, 
                                       modulate_act_type=modulate_act_type, 
                                       cross_att_layers=0, 
                                       return_all_layers=return_all_layers, 
                                       flash_v2=flash_v2, 
                                       qkv_packed=qkv_packed,
                                       shift_group=shift_group,
                                       window_size=window_size)
        self.transformer = Transformer(width, layers-encode_layers, heads, 
                                       modulate_feature_size=modulate_feature_size, 
                                       modulate_act_type=modulate_act_type, 
                                       cross_att_layers=0, 
                                       return_all_layers=return_all_layers, 
                                       flash_v2=flash_v2, 
                                       qkv_packed=qkv_packed,
                                       shift_group=shift_group,
                                       window_size=window_size)

        if not self.disable_post_ln:
            self.ln_post = LayerNorm(width)

        if weight is not None:
            if not self.disable_dino:
                if "clip" in weight:
                    raise NotImplementedError()
                elif weight.startswith("vit_b_16"):
                    load_timm_to_clip(self, config_name=weight, init_mode=error_weight_init_mode)
                elif weight.startswith("vit_b_8"):
                    load_timm_to_clip(self, config_name=weight, init_mode=error_weight_init_mode)
                else:
                    raise NotImplementedError()
            else:
                self.apply(_init_weights)

            # Init the weight and bias of modulation_fn to zero
            if modulate_feature_size != 0:
                for block in self.transformer.resblocks:
                    if block.modulation_fn is not None:
                        block.modulation_fn[2].weight.data.zero_()
                        block.modulation_fn[2].bias.data.zero_()
                        if block.mlp_modulation_fn is not None:
                            block.mlp_modulation_fn[2].weight.data.zero_()
                            block.mlp_modulation_fn[2].bias.data.zero_()
            for block in self.transformer.resblocks:
                if block.cross_att:
                    zero_module(block.cross_att.to_out)

    def set_grad_checkpointing(self, flag=True):
        self.transformer.set_grad_checkpointing(flag)

    def forward(self, 
            x: torch.Tensor, 
            modulation: torch.Tensor = None, 
            context: torch.Tensor = None, 
            additional_residuals=None,
            abla_crossview=False,
            pos=None):

        # image tokenization
        bs, vs = x.shape[:2]
        x = rearrange(x, 'b v h g -> (b v) h g')  # shape = [*, grid ** 2, width]
        pos = rearrange(pos, 'b v c h -> (b v) c h')
       
        # pre-normalization
        B, N, C = x.shape
        x = x.reshape(B, N, -1, 64)
        x = x.permute(0, 2, 1, 3)
        # print('pre x mean: ', x.mean().item())
        # print('pre x var: ', x.var().item())
        x = x + self.rope(torch.ones_like(x).to(x), pos)
        # print('x mean: ', x.mean().item())
        # print('x var: ', x.var().item())
        x = x.permute(0, 2, 1, 3)
        x = x.reshape(B, N, -1)
        # use encode to extract features
        if self.encode_layers > 0:
            x = x.permute(1, 0, 2)  # NLD -> LND
            x = self.encoder(x, modulation, context, additional_residuals=additional_residuals)
            x = x.permute(1, 0, 2)  # LND -> NLD
        if not self.disable_dino:
            x = x.permute(1, 0, 2)  # NLD -> LND
        else:    
            if not abla_crossview:
                # flatten x along the video dimension
                x = rearrange(x, '(b v) n d -> b (v n) d', v=vs)
                # print(x.shape)
                x = x.permute(1, 0, 2)  # NLD -> LND
            else:
                x = x.permute(1, 0, 2)
        x = self.transformer(x, modulation, context, additional_residuals=additional_residuals)

        if self.add_zero_conv:
            assert isinstance(x, (list, tuple))
            assert len(x) == len(self.zero_convs)
            new_x = []
            for sub_x, sub_zero_conv in zip(x, self.zero_convs):
                sub_x_out = sub_zero_conv(sub_x.permute(1, 2, 0))
                new_x.append(sub_x_out.permute(2, 0, 1))
            x = new_x

        if self.return_all_layers:
            assert isinstance(x, (list, tuple))
            if not self.disable_post_ln:
                x_final = x[-1].permute(1, 0, 2)  # LND -> NLD
                x_final = self.ln_post(x_final)
                x_final = rearrange(x_final, 'b (v n) d -> b v n d', v=vs)
            x = [s.permute(1, 0, 2) for s in x]
            x.append(x_final)
            return x

        if not self.disable_post_ln:
            x = x.permute(1, 0, 2)  # LND -> NLD
            x = self.ln_post(x)
        if not self.disable_dino:
            x = rearrange(x, '(b v) n d -> b v n d', b=bs, v=vs)
        else:
            if not abla_crossview:
                # reshape x back to video dimension
                x = rearrange(x, 'b (v n) d -> b v n d', v=vs)
            else:
                x = rearrange(x, '(b v) n d -> b v n d', v=vs)
        return x

    def extra_repr(self) -> str:
        pass


def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic'):
    """
    Resize positional embeddings, implementation from google/simclr and open_clip.
    """
    # Rescale the grid of position embeddings when loading from state_dict
    old_pos_embed = state_dict.get('positional_embedding', None)
    if old_pos_embed is None:
        return

    # Compute the grid size and extra tokens
    old_pos_len = state_dict["positional_embedding"].shape[0]
    old_grid_size = round((state_dict["positional_embedding"].shape[0]) ** 0.5)
    grid_size = round((model.positional_embedding.shape[0]) ** 0.5)
    if old_grid_size == grid_size:
        return
    extra_tokens = old_pos_len - (old_grid_size ** 2)

    if extra_tokens:
        pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
    else:
        pos_emb_tok, pos_emb_img = None, old_pos_embed

    # Only interpolate the positional emb part, not the extra token part.
    pos_emb_img = pos_emb_img.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2)
    pos_emb_img = F.interpolate(
        pos_emb_img,
        size=grid_size,
        mode=interpolation,
        align_corners=True,
    )
    pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size * grid_size, -1)[0]

    # Concatenate back the
    if pos_emb_tok is not None:
        new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
    else:
        new_pos_embed = pos_emb_img
    state_dict['positional_embedding'] = new_pos_embed


myname2timmname = {
    "vit_b_16_mae": None,
    "vit_b_16_in": "vit_base_patch16_224",
    "vit_b_16_in21k": 'vit_base_patch16_224_in21k',
    "vit_b_16_sam": 'vit_base_patch16_224_sam',
    "vit_b_16_dino": 'vit_base_patch16_224_dino',
    "vit_b_16_mill_in21k": 'vit_base_patch16_224_miil_in21k',
    "vit_b_16_mill": 'vit_base_patch16_224_miil',
    "vit_b_8_dino": 'vit_base_patch16_224_dino',
}

def load_timm_to_clip(module, config_name="vit_b_16_mae", init_mode='zero'):
    from torch import nn
    from clip.model import LayerNorm as CLIPLayerNorm
    from clip.model import QuickGELU

    from torch.nn import GELU
    from torch.nn import LayerNorm

    import json
    now_dir = os.path.abspath(os.path.dirname(__file__))
    timm2clip = json.load(open(f"{now_dir}/timm2clip_vit_b_16.json"))

    assert config_name in myname2timmname, f"The name {config_name} is not one of {list(myname2timmname.keys())}"
    try:
        timm_weight = torch.load(f"/sensei-fs/users/hatan/model/{config_name}.pth")["model"]
    except Exception as e:
        try:
            print(f"/input/yhxu/models/dino_weights/{config_name}.pth")
            timm_weight = torch.load(f"/input/yhxu/models/dino_weights/{config_name}.pth")["model"]
        except Exception as e:
            try:
                print(f"/home/yhxu/models/dino_weights/{config_name}.pth")
                timm_weight = torch.load(f"/home/yhxu/models/dino_weights/{config_name}.pth")["model"]
            except:
                try:
                    timm_weight = torch.load(f"/nas2/zifan/checkpoint/dino_weights/{config_name}.pth")["model"]
                except Exception as e:
                    print("Please download weight with support/dump_timm_weights.py. \n"
                        "If using mae weight, please check https://github.com/facebookresearch/mae,"
                        "and download the weight as vit_b_16_mae.pth")
                    assert False

    # Build model's state dict
    clipname2timmweight = {}
    for timm_key, clip_key in timm2clip.items():
        timm_value = timm_weight[timm_key]
        clipname2timmweight[clip_key[len("visual."):]] = timm_value.squeeze()

    # Resize positional embedding
    resize_pos_embed(clipname2timmweight, module)

    # Load weight to model.
    model_visual_keys = set(module.state_dict().keys())
    load_keys = set(clipname2timmweight.keys())
    # print(f"Load not in model: {load_keys - model_visual_keys}")
    # print(f"Model not in load: {model_visual_keys - load_keys}")
    # status = module.load_state_dict(clipname2timmweight, strict=False)
    try:
        status = module.load_state_dict(clipname2timmweight, strict=False)
    except:
        print('conv.weight has error!')
        if init_mode == 'zero':
            new_weight = torch.zeros_like(clipname2timmweight['conv1.weight'])
            new_weight = new_weight.repeat(1, 2, 1, 1)
            new_weight[:,:3] = clipname2timmweight['conv1.weight']
        elif init_mode == 'mean':
            new_weight = torch.zeros_like(clipname2timmweight['conv1.weight'])
            new_weight = new_weight.repeat(1, 3, 1, 1)
            new_weight = ((clipname2timmweight['conv1.weight']).repeat(1, 3, 1, 1))/3

        clipname2timmweight['conv1.weight'] = new_weight
        status = module.load_state_dict(clipname2timmweight, strict=False)

    # Since timm model has bias, we add it back here.
    module.conv1.bias = nn.Parameter(clipname2timmweight['conv1.bias'])

    # Reinit the visual weights that not covered by timm
    module.ln_pre.reset_parameters()

    def convert_clip_to_timm(module):
        """Copy from detectron2, frozen BN"""
        res = module
        if isinstance(module, CLIPLayerNorm):
            # Timm uses eps=1e-6 while CLIP uses eps=1e-5
            res = LayerNorm(module.normalized_shape, eps=1e-6, elementwise_affine=module.elementwise_affine)
            if module.elementwise_affine:
                res.weight.data = module.weight.data.clone().detach()
                res.bias.data = module.bias.data.clone().detach()
        elif isinstance(module, QuickGELU):
            # Timm uses GELU while CLIP uses QuickGELU
            res = GELU()
        else:
            for name, child in module.named_children():
                new_child = convert_clip_to_timm(child)
                if new_child is not child:
                    res.add_module(name, new_child)
        return res