File size: 17,285 Bytes
91126af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
"""from https://github.com/lucidrains/x-transformers"""
import math
from random import random
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from functools import partial, wraps
from inspect import isfunction
from einops import rearrange, repeat, reduce
# constants
DEFAULT_DIM_HEAD = 64
# helpers
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else (val,) * depth
# init helpers
def init_zero_(layer):
nn.init.constant_(layer.weight, 0.)
if exists(layer.bias):
nn.init.constant_(layer.bias, 0.)
# keyword argument helpers
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(), dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
# initializations
def deepnorm_init(
transformer,
beta,
module_name_match_list=['.ff.', '.to_v', '.to_out']
):
for name, module in transformer.named_modules():
if type(module) != nn.Linear:
continue
needs_beta_gain = any(map(lambda substr: substr in name, module_name_match_list))
gain = beta if needs_beta_gain else 1
nn.init.xavier_normal_(module.weight.data, gain=gain)
if exists(module.bias):
nn.init.constant_(module.bias.data, 0)
# activations
class ReluSquared(nn.Module):
def forward(self, x):
return F.relu(x) ** 2
# norms
class Scale(nn.Module):
def __init__(self, value, fn):
super().__init__()
self.value = value
self.fn = fn
def forward(self, x, **kwargs):
out = self.fn(x, **kwargs)
scale_fn = lambda t: t * self.value
if not isinstance(out, tuple):
return scale_fn(out)
return (scale_fn(out[0]), *out[1:])
class ScaleNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5))
def forward(self, x):
norm = torch.norm(x, dim=-1, keepdim=True)
return x / norm.clamp(min=self.eps) * self.g
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-8):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
return x / norm.clamp(min=self.eps) * self.g
# residual and residual gates
class Residual(nn.Module):
def __init__(self, dim, scale_residual=False, scale_residual_constant=1.):
super().__init__()
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
self.scale_residual_constant = scale_residual_constant
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
if self.scale_residual_constant != 1:
residual = residual * self.scale_residual_constant
return x + residual
class GRUGating(nn.Module):
def __init__(self, dim, scale_residual=False, **kwargs):
super().__init__()
self.gru = nn.GRUCell(dim, dim)
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
gated_output = self.gru(
rearrange(x, 'b n d -> (b n) d'),
rearrange(residual, 'b n d -> (b n) d')
)
return gated_output.reshape_as(x)
# feedforward
class GLU(nn.Module):
def __init__(self, dim_in, dim_out, activation):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * self.act(gate)
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out=None,
mult=4,
glu=False,
swish=False,
relu_squared=False,
post_act_ln=False,
dropout=0.,
no_bias=False,
zero_init_output=False
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
if relu_squared:
activation = ReluSquared()
elif swish:
activation = nn.SiLU()
else:
activation = nn.GELU()
project_in = nn.Sequential(
nn.Linear(dim, inner_dim, bias=not no_bias),
activation
) if not glu else GLU(dim, inner_dim, activation)
self.ff = nn.Sequential(
project_in,
nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out, bias=not no_bias)
)
# init last linear layer to 0
if zero_init_output:
init_zero_(self.ff[-1])
def forward(self, x):
return self.ff(x)
# attention.
class Attention(nn.Module):
def __init__(
self,
dim,
kv_dim=None,
dim_head=DEFAULT_DIM_HEAD,
heads=8,
causal=False,
dropout=0.,
zero_init_output=False,
shared_kv=False,
value_dim_head=None,
flash_attention=True,
):
super().__init__()
self.scale = dim_head ** -0.5
if kv_dim is None:
kv_dim = dim
self.heads = heads
self.causal = causal
value_dim_head = default(value_dim_head, dim_head)
q_dim = k_dim = dim_head * heads
v_dim = out_dim = value_dim_head * heads
self.to_q = nn.Linear(dim, q_dim, bias=False)
self.to_k = nn.Linear(kv_dim, k_dim, bias=False)
# shared key / values, for further memory savings during inference
assert not (
shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values'
self.to_v = nn.Linear(kv_dim, v_dim, bias=False) if not shared_kv else None
# Convert to output
self.to_out = nn.Linear(out_dim, dim, bias=False)
# dropout
self.dropout_p = dropout
self.dropout = nn.Dropout(dropout)
# Flash Attention, needs PyTorch >= 1.13
self.flash = flash_attention
assert self.flash
# Use torch.nn.functional.scaled_dot_product_attention if available
# otherwise, we use the xformer library.
# self.use_xformer = True
self.use_xformer = not hasattr(torch.nn.functional, 'scaled_dot_product_attention')
# init output projection 0
if zero_init_output:
init_zero_(self.to_out)
def forward(
self,
x,
context=None,
mask=None,
context_mask=None,
):
# print("x", x.dtype)
h = self.heads
kv_input = default(context, x)
q_input = x
k_input = kv_input
v_input = kv_input
q = self.to_q(q_input)
k = self.to_k(k_input)
v = self.to_v(v_input) if exists(self.to_v) else k
# print("q", q.dtype)
# print("k", k.dtype)
# print("v", v.dtype)
if self.use_xformer:
# Since xformers only accepts bf16/fp16, we need to convert qkv to bf16/fp16
dtype = q.dtype
q, k, v = map(lambda t: t.bfloat16() if t.dtype == torch.float32 else t, (q, k, v))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q, k, v))
try:
import xformers.ops as xops
except ImportError as e:
print("Please install xformers to use flash attention for PyTorch < 2.0.0.")
raise e
# Use the flash attention support from the xformers library
if self.causal:
attention_bias = xops.LowerTriangularMask()
else:
attention_bias = None
# The memory_efficient_attention takes the input as (batch, seq_len, heads, dim)
out = xops.memory_efficient_attention(
q, k, v, attn_bias=attention_bias,
# op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp),
)
out = out.to(dtype)
out = rearrange(out, 'b n h d -> b n (h d)')
else:
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
# efficient attention using Flash Attention CUDA kernels
out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=self.dropout_p, is_causal=self.causal,
)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
if exists(mask):
mask = rearrange(mask, 'b n -> b n 1')
out = out.masked_fill(~mask, 0.)
return out
def extra_repr(self) -> str:
return f"causal: {self.causal}, flash attention: {self.flash}, " \
f"use_xformers (if False, use torch.nn.functional.scaled_dot_product_attention): {self.use_xformer}"
def modulate(x, shift, scale):
# from https://github.com/facebookresearch/DiT/blob/796c29e532f47bba17c5b9c5eb39b9354b8b7c64/models.py#L19
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
class AttentionLayers(nn.Module):
def __init__(
self,
dim,
depth,
heads=8,
ctx_dim=None,
causal=False,
cross_attend=False,
only_cross=False,
use_scalenorm=False,
use_rmsnorm=False,
residual_attn=False,
cross_residual_attn=False,
macaron=False,
pre_norm=True,
gate_residual=False,
scale_residual=False,
scale_residual_constant=1.,
deepnorm=False,
sandwich_norm=False,
zero_init_branch_output=False,
layer_dropout=0.,
# Below are the arguments used for this img2nerf projects
modulate_feature_size=-1,
checkpointing=False,
checkpoint_every=1,
**kwargs
):
super().__init__()
# Add checkpointing
self.checkpointing = checkpointing
self.checkpoint_every = checkpoint_every
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs)
self.dim = dim
self.depth = depth
self.layers = nn.ModuleList([])
# determine deepnorm and residual scale
if deepnorm:
assert scale_residual_constant == 1, 'scale residual constant is being overridden by deep norm settings'
pre_norm = sandwich_norm = False
scale_residual = True
scale_residual_constant = (2 * depth) ** 0.25
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
self.pre_norm = pre_norm
self.sandwich_norm = sandwich_norm
self.residual_attn = residual_attn
self.cross_residual_attn = cross_residual_attn
self.cross_attend = cross_attend
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
norm_class = RMSNorm if use_rmsnorm else norm_class
norm_fn = partial(norm_class, dim)
if cross_attend and not only_cross:
default_block = ('a', 'c', 'f')
elif cross_attend and only_cross:
default_block = ('c', 'f')
else:
default_block = ('a', 'f')
if macaron:
default_block = ('f',) + default_block
# zero init
if zero_init_branch_output:
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
# calculate layer block order
layer_types = default_block * depth
self.layer_types = layer_types
# stochastic depth
self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types))
# iterate and construct layers
for ind, layer_type in enumerate(self.layer_types):
is_last_layer = ind == (len(self.layer_types) - 1)
if layer_type == 'a':
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
elif layer_type == 'c':
layer = Attention(dim, kv_dim=ctx_dim, heads=heads, **attn_kwargs)
elif layer_type == 'f':
layer = FeedForward(dim, **ff_kwargs)
layer = layer if not macaron else Scale(0.5, layer)
else:
raise Exception(f'invalid layer type {layer_type}')
residual_fn = GRUGating if gate_residual else Residual
residual = residual_fn(dim, scale_residual=scale_residual, scale_residual_constant=scale_residual_constant)
pre_branch_norm = norm_fn() if pre_norm else None
post_branch_norm = norm_fn() if sandwich_norm else None
post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None
# The whole modulation part is copied from DiT
# https://github.com/facebookresearch/DiT
modulation = None
if modulate_feature_size is not None:
modulation = nn.Sequential(
nn.LayerNorm(modulate_feature_size),
nn.GELU(),
nn.Linear(modulate_feature_size, 3 * dim, bias=True)
)
norms = nn.ModuleList([
pre_branch_norm,
post_branch_norm,
post_main_norm,
])
self.layers.append(nn.ModuleList([
norms,
layer,
residual,
modulation,
]))
if deepnorm:
init_gain = (8 * depth) ** -0.25
deepnorm_init(self, init_gain)
def forward(
self,
x,
context=None,
modulation=None,
mask=None,
context_mask=None,
):
assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True'
num_layers = len(self.layer_types)
assert num_layers % self.checkpoint_every == 0
for start_layer_idx in range(0, num_layers, self.checkpoint_every):
end_layer_idx = min(start_layer_idx + self.checkpoint_every, num_layers)
def run_layers(x, context, modulation, start, end):
for ind, (layer_type, (norm, block, residual_fn, modulation_fn), layer_dropout) in enumerate(
zip(self.layer_types[start: end], self.layers[start: end], self.layer_dropouts[start: end])):
residual = x
pre_branch_norm, post_branch_norm, post_main_norm = norm
if exists(pre_branch_norm):
x = pre_branch_norm(x)
if modulation_fn is not None:
shift, scale, gate = modulation_fn(modulation).chunk(3, dim=1)
x = modulate(x, shift, scale)
if layer_type == 'a':
out = block(x, mask=mask)
elif layer_type == 'c':
out = block(x, context=context, mask=mask, context_mask=context_mask)
elif layer_type == 'f':
out = block(x)
if exists(post_branch_norm):
out = post_branch_norm(out)
if modulation_fn is not None:
# TODO: add a option to use gate or not.
out = out * gate.unsqueeze(1)
x = residual_fn(out, residual)
if exists(post_main_norm):
x = post_main_norm(x)
return x
if self.checkpointing:
# print("X checkpointing")
x = checkpoint(run_layers, x, context, modulation, start_layer_idx, end_layer_idx)
else:
x = run_layers(x, context, modulation, start_layer_idx, end_layer_idx)
return x
|