File size: 13,653 Bytes
91126af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import torch
import torch.nn as nn
import numpy as np
import mast3r.utils.path_to_dust3r # noqa
from dust3r.utils.geometry import normalize_pointcloud, xy_grid
import os
import torch.nn.functional as F
import cv2
from pytorch3d.ops import knn_points
class MeshOutput():
def __init__(self, sam=False):
self.sam = sam
def __call__(self, gt1, gt2, pred1, pred2, trajectory_pred, render_gt=None, **kw):
pts3d = pred2['pts3d']
conf = pred2['conf']
pts3d = pts3d.detach().cpu()
B, N, H, W, _ = pts3d.shape
thres = torch.quantile(conf.flatten(2,3), 0.1, dim=-1)[0]
masks_conf = conf > thres[None, :, None, None]
masks_conf = masks_conf.cpu()
images = [view['img_org'] for view in gt1+gt2]
shape = torch.stack([view['true_shape'] for view in gt1+gt2], dim=1)
images = torch.stack(images,1).permute(0,1,3,4,2).detach().cpu().numpy()
images = images / 2 + 0.5
images = images.reshape(B, N, H, W, 3)
outfile = os.path.join('./output/mesh', gt1[0]['instance'][0].split('/')[-1])
outfile = outfile
os.makedirs(outfile, exist_ok=True)
# estimate focal length
images = images[0]
pts3d = pts3d[0]
masks_conf = masks_conf[0]
xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0) # homogeneous (x,y,1)
pp = torch.tensor((W/2, H/2)).to(xy_over_z)
pixels = xy_grid(W, H, device=xy_over_z.device).view(1, -1, 2) - pp.view(-1, 1, 2) # B,HW,2
u, v = pixels[:1].unbind(dim=-1)
x, y, z = pts3d[:1].reshape(-1,3).unbind(dim=-1)
fx_votes = (u * z) / x
fy_votes = (v * z) / y
# assume square pixels, hence same focal for X and Y
f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1)
focal = torch.nanmedian(f_votes, dim=-1).values
focal = focal.item()
pts3d = pts3d.numpy()
# use PNP to estimate camera poses
pred_poses = []
for i in range(pts3d.shape[0]):
shape_input_each = shape[:, i]
mesh_grid = xy_grid(shape_input_each[0,1], shape_input_each[0,0])
cur_inlier = conf[0,i] > torch.quantile(conf[0,i], 0.6)
cur_inlier = cur_inlier.detach().cpu().numpy()
ransac_thres = 0.5
confidence = 0.9999
iterationsCount = 10_000
cur_pts3d = pts3d[i]
K = np.float32([(focal, 0, W/2), (0, focal, H/2), (0, 0, 1)])
success, r_pose, t_pose, _ = cv2.solvePnPRansac(cur_pts3d[cur_inlier].astype(np.float64), mesh_grid[cur_inlier].astype(np.float64), K, None,
flags=cv2.SOLVEPNP_SQPNP,
iterationsCount=iterationsCount,
reprojectionError=1,
confidence=confidence)
r_pose = cv2.Rodrigues(r_pose)[0]
RT = np.r_[np.c_[r_pose, t_pose], [(0,0,0,1)]]
cam2world = np.linalg.inv(RT)
pred_poses.append(cam2world)
pred_poses = np.stack(pred_poses, axis=0)
pred_poses = torch.tensor(pred_poses)
# use sam to segment the sky region
if self.sam:
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from sam.scripts.segformer import segformer_segmentation as segformer_func
from sam.scripts.configs.ade20k_id2label import CONFIG as CONFIG_ADE20K_ID2LABEL
import pycocotools.mask as maskUtils
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
sam = sam_model_registry["vit_h"](checkpoint='/data0/zsz/mast3recon/checkpoints/sam_vit_h_4b8939.pth').cuda()
semantic_branch_processor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b5-finetuned-ade-640-640")
semantic_branch_model = SegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b5-finetuned-ade-640-640").to(pts2)
id2label = CONFIG_ADE20K_ID2LABEL
mask_branch_model = SamAutomaticMaskGenerator(
model=sam,
points_per_side=64,
# Foggy driving (zero-shot evaluate) is more challenging than other dataset, so we use a larger points_per_side
pred_iou_thresh=0.86,
stability_score_thresh=0.92,
crop_n_layers=1,
crop_n_points_downscale_factor=2,
min_mask_region_area=100, # Requires open-cv to run post-processing
output_mode='coco_rle',
)
class_masks = []
for img in images:
anns = {'annotations': mask_branch_model.generate(img)}
class_ids = segformer_func((img * 255).astype(np.uint8), semantic_branch_processor, semantic_branch_model, 'cuda')
semantc_mask = class_ids.clone()
anns['annotations'] = sorted(anns['annotations'], key=lambda x: x['area'], reverse=True)
bitmasks, class_names = [], []
for ann in anns['annotations']:
valid_mask = torch.tensor(maskUtils.decode(ann['segmentation'])).bool()
# get the class ids of the valid pixels
propose_classes_ids = class_ids[valid_mask]
num_class_proposals = len(torch.unique(propose_classes_ids))
if num_class_proposals == 1:
semantc_mask[valid_mask] = propose_classes_ids[0]
ann['class_name'] = id2label['id2label'][str(propose_classes_ids[0].item())]
ann['class_proposals'] = id2label['id2label'][str(propose_classes_ids[0].item())]
class_names.append(ann['class_name'])
# bitmasks.append(maskUtils.decode(ann['segmentation']))
continue
top_1_propose_class_ids = torch.bincount(propose_classes_ids.flatten()).topk(1).indices
top_1_propose_class_names = [id2label['id2label'][str(class_id.item())] for class_id in top_1_propose_class_ids]
semantc_mask[valid_mask] = top_1_propose_class_ids
ann['class_name'] = top_1_propose_class_names[0]
ann['class_proposals'] = top_1_propose_class_names[0]
class_names.append(ann['class_name'])
# bitmasks.append(maskUtils.decode(ann['segmentation']))
del valid_mask
del propose_classes_ids
del num_class_proposals
del top_1_propose_class_ids
del top_1_propose_class_names
sematic_class_in_img = torch.unique(semantc_mask)
semantic_bitmasks, semantic_class_names = [], []
# semantic prediction
anns['semantic_mask'] = {}
flag = False
for i in range(len(sematic_class_in_img)):
class_name = id2label['id2label'][str(sematic_class_in_img[i].item())]
if class_name != 'sky':
continue
flag = True
class_mask = semantc_mask == sematic_class_in_img[i]
# class_mask = class_mask.cpu().numpy().astype(np.uint8)
class_masks.append(class_mask)
if flag == False:
class_mask = torch.zeros_like(semantc_mask) > 0
class_masks.append(class_mask)
class_masks = torch.stack(class_masks, 0)
class_masks = ~class_masks
else:
class_masks = torch.ones_like(masks_conf) > 0
# use knn to clean the point cloud
K = 10
points = torch.tensor(pts3d.reshape(1,-1,3)).cuda()
knn = knn_points(points, points, K=K)
dists = knn.dists
mean_dists = dists.mean(dim=-1)
masks_dist = mean_dists < torch.quantile(mean_dists.reshape(-1), 0.95)
masks_dist = masks_dist.detach().cpu().numpy()
import nerfvis.scene as scene_vis
scene_vis.set_opencv()
masks_conf = (masks_conf > 0) & masks_dist.reshape(-1,H,W) & class_masks.reshape(-1,H,W)
masks_conf = masks_conf > 0
filtered_points = pts3d[masks_conf].reshape(-1, 3)
colors = images[masks_conf].reshape(-1, 3)
scene_vis.add_points('points', filtered_points.reshape(-1,3), vert_color=colors.reshape(-1,3), size = 1)
scene_vis.add_images(
f"images/i",
images, # Can be a list of paths too (requires joblib for that)
r=pred_poses[:, :3, :3],
t=pred_poses[:, :3, 3],
focal_length=focal,
z=0.1,
with_camera_frustum=True,
)
np.savez(outfile + '/pred.npz', pts3d=pts3d, vert_color=images, poses=pred_poses.detach().cpu(), intrinsic=focal, images=images, mask = masks_conf)
print(f"save {outfile}")
save_content = 'CUDA_VISIBLE_DEVICES=1 python visualizer/run_vis.py --result_npz {} --results_folder {}'.format(outfile + '/pred.npz', outfile)
file_path = outfile + '/run_vis.sh'
os.system(save_content)
print(f"run {file_path} to visualize geometry and poses")
with open(file_path, 'a') as file:
file.write(save_content + '\n')
scene_vis.display(port=8828)
return None, None
def interpolate_pose(pose1, pose2, t):
"""
Interpolate between two camera poses (4x4 matrices).
:param pose1: First pose (4x4 matrix)
:param pose2: Second pose (4x4 matrix)
:param t: Interpolation factor, t in [0, 1]
:return: Interpolated pose (4x4 matrix)
"""
# Extract translation and rotation from both poses
translation1 = pose1[:3, 3].detach().cpu().numpy()
translation2 = pose2[:3, 3].detach().cpu().numpy()
rotation1 = pose1[:3, :3].detach().cpu().numpy()
rotation2 = pose2[:3, :3].detach().cpu().numpy()
# Interpolate the translation (linear interpolation)
interpolated_translation = (1 - t) * translation1 + t * translation2
# Convert rotation matrices to quaternions
quat1 = R.from_matrix(rotation1).as_quat()
quat2 = R.from_matrix(rotation2).as_quat()
# Slerp for rotation interpolation
slerp = Slerp([0, 1], R.from_quat([quat1, quat2]))
interpolated_rotation = slerp(t).as_matrix()
# Combine the interpolated rotation and translation
interpolated_pose = np.eye(4)
interpolated_pose[:3, :3] = interpolated_rotation
interpolated_pose[:3, 3] = interpolated_translation
return interpolated_pose
def colorize(value, vmin=None, vmax=None, cmap='magma_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
"""Converts a depth map to a color image.
Args:
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
Returns:
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
"""
if isinstance(value, torch.Tensor):
value = value.detach().cpu().numpy()
value = value.squeeze()
if invalid_mask is None:
invalid_mask = value == invalid_val
mask = np.logical_not(invalid_mask)
# normalize
vmin = np.percentile(value[mask],2) if vmin is None else vmin
vmax = np.percentile(value[mask],85) if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
else:
# Avoid 0-division
value = value * 0.
# squeeze last dim if it exists
# grey out the invalid values
value[invalid_mask] = np.nan
import matplotlib
cmapper = matplotlib.cm.get_cmap(cmap)
if value_transform:
value = value_transform(value)
# value = value / value.max()
value = cmapper(value, bytes=True) # (nxmx4)
# img = value[:, :, :]
img = value[...]
img[invalid_mask] = background_color
# return img.transpose((2, 0, 1))
if gamma_corrected:
# gamma correction
img = img / 255
img = np.power(img, 2.2)
img = img * 255
img = img.astype(np.uint8)
img = torch.from_numpy(img)/255.
return img.permute(2,0,1)[:3] |