File size: 28,033 Bytes
91126af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import torch
import copy
import torch.nn as nn
import torch.nn.functional as F
import os
from dust3r.utils.geometry import inv, geotrf, normalize_pointcloud, closed_form_inverse
from mast3r.catmlp_dpt_head import mast3r_head_factory
from mast3r.vgg_pose_head import CameraPredictor, CameraPredictor_clean, Mlp
from mast3r.shallow_cnn import FeatureNet
import mast3r.utils.path_to_dust3r  # noqa
from dust3r.model import AsymmetricCroCo3DStereo  # noqa
from dust3r.utils.misc import transpose_to_landscape, freeze_all_params  # noqa
inf = float('inf')
from dust3r.patch_embed import get_patch_embed
from torch.utils.checkpoint import checkpoint
from pytorch3d.transforms.rotation_conversions import matrix_to_quaternion

def load_model(model_path, device, verbose=True):
    if verbose:
        print('... loading model from', model_path)
    ckpt = torch.load(model_path, map_location='cpu')
    args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R")
    if 'landscape_only' not in args:
        args = args[:-1] + ', landscape_only=False)'
    else:
        args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False')
    assert "landscape_only=False" in args
    if verbose:
        print(f"instantiating : {args}")
    net = eval(args)
    s = net.load_state_dict(ckpt['model'], strict=False)
    if verbose:
        print(s)
    return net.to(device)
import torch

def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)

class AsymmetricMASt3R(AsymmetricCroCo3DStereo):
    def __init__(self, wpose=False, wogs=True,  desc_mode=('norm'), two_confs=False, desc_conf_mode=None, **kwargs):
        self.desc_mode = desc_mode
        self.two_confs = two_confs
        self.desc_conf_mode = desc_conf_mode
        self.wogs = wogs
        self.wpose = wpose
        super().__init__(**kwargs)
        
        # Global Geometry Projector
        self.dec_blocks_point = copy.deepcopy(self.dec_blocks_fine)
        self.cam_cond_encoder_point = copy.deepcopy(self.cam_cond_encoder)
        self.decoder_embed_point = copy.deepcopy(self.decoder_embed)
        self.dec_norm_point = copy.deepcopy(self.dec_norm)
        self.pose_token_ref_point = copy.deepcopy(self.pose_token_ref)
        self.pose_token_source_point = copy.deepcopy(self.pose_token_source)
        self.cam_cond_embed_point = copy.deepcopy(self.cam_cond_embed)
        self.cam_cond_embed_point_pre = copy.deepcopy(self.cam_cond_embed)
        self.inject_stage3 = nn.ModuleList([nn.Linear(self.enc_embed_dim, self.dec_embed_dim, bias=False) for i in range(3)])
        self.enc_inject_stage3  = nn.ModuleList([copy.deepcopy(self.enc_norm) for i in range(3)])

        # Camera-centric Geometry Estimator
        self.cam_cond_encoder_fine = copy.deepcopy(self.cam_cond_encoder)
        self.adaLN_modulation = nn.ModuleList([nn.Sequential(
            nn.SiLU(inplace=False),
            nn.Linear(self.dec_embed_dim, 3 * self.dec_embed_dim, bias=True)
        ) for _ in range(len(self.dec_blocks_fine))])
        for block in self.adaLN_modulation:
            nn.init.constant_(block[-1].weight, 0)
            nn.init.constant_(block[-1].bias, 0)
        self.decoder_embed_fine = copy.deepcopy(self.decoder_embed)
        self.dec_cam_norm_fine = copy.deepcopy(self.dec_cam_norm)
        self.dec_norm_fine = copy.deepcopy(self.dec_norm)     
        self.pose_token_ref_fine = copy.deepcopy(self.pose_token_ref)
        self.pose_token_source_fine = copy.deepcopy(self.pose_token_source)
        self.cam_cond_embed_fine = copy.deepcopy(self.cam_cond_embed)
        self.inject_stage2 = nn.ModuleList([nn.Linear(self.enc_embed_dim, self.dec_embed_dim, bias=False) for i in range(3)])
        self.enc_inject_stage2  = nn.ModuleList([copy.deepcopy(self.enc_norm) for i in range(3)])

        # Encoder 
        self.enc_norm_coarse = copy.deepcopy(self.enc_norm)
        self.embed_pose = Mlp(7, hidden_features=self.dec_embed_dim, out_features=self.dec_embed_dim)
        
        # Shallow CNNs
        self.cnn_wobn = FeatureNet()
        self.cnn_proj = nn.Conv2d(64, 16, 3, 1, 1)
        self.cnn_fusion = nn.Conv2d(32*3, 64, 3, 1, 1)
        
        for i in range(3):
            nn.init.constant_(self.inject_stage2[i].weight, 0.)
            nn.init.constant_(self.inject_stage3[i].weight, 0.)
        self.idx_hook = [2, 5, 8]

        self.encode_feature_landscape = transpose_to_landscape(self.encode_feature, activate=True)
        if self.wogs == False:
            self.decoder_embed_stage2 = copy.deepcopy(self.decoder_embed)
            nn.init.constant_(self.decoder_embed_stage2.weight, 0.)
            self.decoder_embed_fxfycxcy = Mlp(4, hidden_features=self.dec_embed_dim, out_features=self.dec_embed_dim)
            nn.init.constant_(self.decoder_embed_fxfycxcy.fc2.weight, 0.)
            nn.init.constant_(self.decoder_embed_fxfycxcy.fc2.bias, 0.)

    def load_state_dict_stage1(self, ckpt, **kw):
        # duplicate all weights for the second decoder if not present
        new_ckpt = dict(ckpt)
        return super().load_state_dict(new_ckpt, **kw)
        
    def load_state_dict(self, ckpt, **kw):
        # duplicate all weights for the second decoder if not present
        new_ckpt = dict(ckpt)
        if self.head_type == 'dpt_gs':
            for key, value in ckpt.items():
                if 'dpt.head.4' in key:
                    state_dict = self.state_dict()
                    state_dict[key][:value.shape[0]] = value
                    new_ckpt[key] = state_dict[key]
        return super().load_state_dict(new_ckpt, **kw)

    def encode_feature(self, imgs_vgg, image_size):
        H, W = image_size
        imgs_vgg = imgs_vgg[0].permute(0,3,1,2)
        feat_vgg3, feat_vgg2, feat_vgg1 = self.cnn_wobn(imgs_vgg)
        feat_vgg2 = F.interpolate(feat_vgg2.float(), (H, W), mode='bilinear', align_corners=True)
        feat_vgg3 = F.interpolate(feat_vgg3.float(), (H, W), mode='bilinear', align_corners=True)
        feat_vgg = self.cnn_fusion(torch.cat((feat_vgg1.float(), feat_vgg2, feat_vgg3), 1))
        feat_vgg_detail = self.cnn_proj(feat_vgg)
        N, C, h, w = feat_vgg.shape
        imgs_vgg = feat_vgg.reshape(N, C, -1).permute(0,2,1)
        N, P, C = imgs_vgg.shape
        imgs_vgg = imgs_vgg.reshape(N, P, -1, 64)
        imgs_vgg = imgs_vgg.permute(0, 2, 1, 3)
        x = torch.arange(w).to(imgs_vgg)
        y = torch.arange(h).to(imgs_vgg)
        xy = torch.meshgrid(x, y, indexing='xy')
        pos_full = torch.cat((xy[0].unsqueeze(-1), xy[1].unsqueeze(-1)), -1).unsqueeze(0)
        imgs_vgg = imgs_vgg + self.rope(torch.ones_like(imgs_vgg).to(imgs_vgg), pos_full.reshape(1,-1,2).repeat(N, 1, 1).long()).to(imgs_vgg)
        imgs_vgg = imgs_vgg.permute(0, 2, 1, 3)
        imgs_vgg = imgs_vgg.reshape(N, -1, C).permute(0, 2, 1)
        imgs_vgg = imgs_vgg.reshape(N, C, h, w)
        return {'imgs_vgg': imgs_vgg.permute(0, 2, 3, 1), 'feat_vgg_detail': feat_vgg_detail.permute(0, 2, 3, 1)}

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kw):
        if os.path.isfile(pretrained_model_name_or_path):
            return load_model(pretrained_model_name_or_path, device='cpu')
        else:
            return super(AsymmetricMASt3R, cls).from_pretrained(pretrained_model_name_or_path, **kw)

    def _encode_image(self, image, true_shape):
        # embed the image into patches  (x has size B x Npatches x C)
        interm_features = []
        x, pos = self.patch_embed(image, true_shape=true_shape)
        
        # add positional embedding without cls token
        assert self.enc_pos_embed is None

        # now apply the transformer encoder and normalization
        for blk in self.enc_blocks:
            interm_features.append(x)
            x = blk(x, pos)

        x = self.enc_norm(x)
        return x, pos, interm_features
    
    def _encode_symmetrized(self, views):
        imgs = [view['img'] for view in views]
        shapes = [view['true_shape'] for view in views]
        imgs  = torch.stack((imgs), dim=1)
        B, views, _, H, W = imgs.shape
        dtype = imgs.dtype
        imgs = imgs.view(-1, *imgs.shape[2:])
        shapes = torch.stack((shapes), dim=1)
        shapes = shapes.view(-1, *shapes.shape[2:])
        out, pos, interm_features = self._encode_image(imgs, shapes)
        out = out.to(dtype)
        for i in range(len(interm_features)):
            interm_features[i] = interm_features[i].to(dtype)
            interm_features[i] = interm_features[i].reshape(B, views, *out.shape[1:])
        true_shape = shapes
        W //= 64
        H //= 64
        n_tokens = H * W
        x_coarse = out.new_zeros((B*views, n_tokens, self.patch_embed_coarse2.embed_dim)).to(dtype)
        pos_coarse = out.new_zeros((B*views, n_tokens, 2), dtype=torch.int64)
        height, width = true_shape.T
        is_landscape = (width >= height)
        is_portrait = ~is_landscape
        fine_token = out.view(B*views, H * 4, W * 4, -1).permute(0, 3, 1, 2)
        x_coarse[is_landscape] = self.patch_embed_coarse2.proj(fine_token[is_landscape]).permute(0, 2, 3, 1).flatten(1, 2)
        x_coarse[is_portrait] = self.patch_embed_coarse2.proj(fine_token[is_portrait].swapaxes(-1, -2)).permute(0, 2, 3, 1).flatten(1, 2)
        pos_coarse[is_landscape] = self.patch_embed_test_.position_getter(1, H, W, pos.device)
        pos_coarse[is_portrait] = self.patch_embed_test_.position_getter(1, W, H, pos.device)
        x_coarse = self.enc_norm_coarse(x_coarse)
        out_coarse = x_coarse.reshape(B, views, *x_coarse.shape[1:]).to(dtype)
        pos_coarse = pos_coarse.reshape(B, views, *pos_coarse.shape[1:])
        shapes_coarse = shapes.reshape(B, views, *shapes.shape[1:]) // 4
        out = out.reshape(B, views, *out.shape[1:])
        pos = pos.reshape(B, views, *pos.shape[1:])
        shapes = shapes.reshape(B, views, *shapes.shape[1:])
        return shapes_coarse, out_coarse, pos_coarse, shapes, out, pos, interm_features
        
    def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
        self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim)
        self.patch_embed_coarse = get_patch_embed(self.patch_embed_cls, img_size, 2, enc_embed_dim, input_dim=enc_embed_dim)
        self.patch_embed_coarse2 = get_patch_embed(self.patch_embed_cls, img_size, 4, enc_embed_dim, input_dim=enc_embed_dim)
        # self.patch_embed_test = get_patch_embed(self.patch_embed_cls, img_size, 2 * patch_size, enc_embed_dim)
        self.patch_embed_test_ = get_patch_embed(self.patch_embed_cls, img_size, 4 * patch_size, enc_embed_dim)
        # self.patch_embed_fine = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim, input_dim=64)

    def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size, **kw):
        assert img_size[0] % patch_size == 0 and img_size[
            1] % patch_size == 0, f'{img_size=} must be multiple of {patch_size=}'
        self.output_mode = output_mode
        self.head_type = head_type
        self.depth_mode = depth_mode
        self.conf_mode = conf_mode
        if self.desc_conf_mode is None:
            self.desc_conf_mode = conf_mode
        # allocate heads
        self.downstream_head1 = mast3r_head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
        self.downstream_head2 = mast3r_head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
        # magic wrapper
        self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
        self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)
        self.pose_head = CameraPredictor_clean(hood_idx=self.downstream_head2.dpt.hooks, trunk_depth=4, rope=self.rope)
        self.pose_head_stage2 = CameraPredictor_clean(hood_idx=self.downstream_head2.dpt.hooks, trunk_depth=4, rope=self.rope)
        self.downstream_head4 = mast3r_head_factory('sh', output_mode, self, has_conf=bool(conf_mode))
        self.head4 = transpose_to_landscape(self.downstream_head4, activate=landscape_only)
        
    def _decoder_stage2(self, f1, pos1, f2, pos2, pose1, pose2, low_token=None):
        f = torch.cat((f1, f2), 1)
        pos = torch.cat((pos1, pos2), 1)
        final_output = [f]  # before projection
        f = self.decoder_embed_fine(f)
        B, views, P, C = f.shape
        f = f.view(B, -1 ,C)
        pos = pos.view(B, -1, pos.shape[-1])
        cam_tokens = []
        final_output.append(f)
        pose1_embed = self.embed_pose(pose1)
        pose2_embed = self.embed_pose(pose2)
        pose_embed = torch.cat((pose1_embed, pose2_embed), 1)

        views = views - 1
        pose_token_ref, pose_token_source = self.pose_token_ref_fine.to(f1.dtype).repeat(B,1,1).view(B, -1, C), self.pose_token_source_fine.to(f1.dtype).repeat(B*views,1,1).view(B*views, -1, C)
        dtype = f.dtype
        hook_idx = 0
        for i, (blk1, cam_cond, cam_cond_embed_fine, adaLN_modulation) in enumerate(zip(self.dec_blocks_fine, self.cam_cond_encoder_fine, self.cam_cond_embed_fine, self.adaLN_modulation)):
            shift_msa, scale_msa, gate_msa = adaLN_modulation(pose_embed).chunk(3, dim=-1)
            pose_token_ref = modulate(pose_token_ref.reshape(B, -1, C), shift_msa[:,:1].reshape(B,-1), scale_msa[:,:1].reshape(B,-1))
            pose_token_source =  modulate(pose_token_source.reshape(B*views, -1, C), shift_msa[:,1:].reshape(B*views,-1), scale_msa[:,1:].reshape(B*views,-1))
            feat = checkpoint(blk1, f, pos)
            feat = feat.view(B, views+1, -1, C)
            f1 = feat[:,:1].view(B, -1, C)
            f2 = feat[:,1:].reshape(B*views, -1, C)
            f1_cam = torch.cat((pose_token_ref, f1.view(B, -1, C)), 1)
            f2_cam = torch.cat((pose_token_source, f2.view(B*views, -1, C)), 1)
            f_cam = torch.cat((f1_cam, f2_cam), 0)
            f_cam = checkpoint(cam_cond, f_cam) # torch.Size([64, 769, 768])
            f_delta = f_cam[:,1:]
            f_cam = f_cam[:,:1]
            f_delta1 = f_delta[:B].view(B, -1, C)
            f_delta2 = f_delta[B:].view(B*views, -1, C)
            pose_token_ref = pose_token_ref.view(B, -1, C) + f_cam[:B].view(B, -1, C)
            pose_token_source = pose_token_source.view(B*views, -1, C) + f_cam[B:].view(B*views, -1, C)
            cam_tokens.append((pose_token_ref, pose_token_source))
            f1 = f1.view(B, -1, C) +  cam_cond_embed_fine(f_delta1)
            f2 = f2.view(B*views, -1, C) + cam_cond_embed_fine(f_delta2)
            if i in self.idx_hook:
                f1 = f1.view(B, -1, C) + self.inject_stage2[hook_idx](self.enc_inject_stage2[hook_idx](low_token[i * 2][:,:1].view(B, -1, 1024)))
                f2 = f2.view(B*views, -1, C) + self.inject_stage2[hook_idx](self.enc_inject_stage2[hook_idx](low_token[i * 2][:,1:].reshape(B*views, -1, 1024)))
                hook_idx += 1
            f1 = f1.view(B, 1, -1 ,C)
            f2 = f2.view(B, views, -1 ,C)
            f = torch.cat((f1, f2), 1)
            final_output.append(f)
            f = f.view(B, -1 ,C)

        # normalize last output
        del final_output[1]  # duplicate with final_output[0]
        final_output[-1] = self.dec_norm_fine(final_output[-1])

        cam_tokens[-1] = tuple(map(self.dec_cam_norm_fine, cam_tokens[-1]))
        return final_output, zip(*cam_tokens)

    def _decoder_stage3(self, feat_ref, pos1, pos2, pose1, pose2, low_token=None, feat_stage2=None, fxfycxcy1=None, fxfycxcy2=None):
        final_output = [feat_ref[0]]  # before projection
        # project to decoder dim
        final_output.append(feat_ref[1])
        with torch.cuda.amp.autocast(enabled=False,dtype=torch.float32):
            pose1_embed = self.embed_pose(pose1)
            pose2_embed = self.embed_pose(pose2)
        pose_embed = torch.cat((pose1_embed, pose2_embed), 1)
        B, views, P, C = feat_ref[-1].shape
        if feat_stage2 is None:
            f = self.decoder_embed_point(feat_ref[0])
        else:
            f = self.decoder_embed_point(feat_ref[0]) + self.decoder_embed_stage2(feat_stage2)
        views = views - 1
        dtype = f.dtype
        pose_token_ref, pose_token_source = self.pose_token_ref_point.to(dtype).repeat(B,1,1).view(B, -1, C), self.pose_token_source_point.to(dtype).repeat(B*views,1,1).view(B*views, -1, C)
        pos = torch.cat((pos1, pos2), 1)
        if fxfycxcy1 is not None:
            with torch.cuda.amp.autocast(enabled=False,dtype=torch.float32):
                fxfycxcy1 = self.decoder_embed_fxfycxcy(fxfycxcy1)
                fxfycxcy2 = self.decoder_embed_fxfycxcy(fxfycxcy2)
                pose1_embed = pose1_embed + fxfycxcy1
                pose2_embed = pose2_embed + fxfycxcy2
        pose1_embed = pose1_embed.to(dtype)
        pose2_embed = pose2_embed.to(dtype)
        pose_token_ref = pose_token_ref + pose1_embed
        pose_token_source = pose_token_source + pose2_embed.view(B*views, -1, C)
        hook_idx = 0
        for i, (blk, blk_cross, cam_cond, cam_cond_embed_point, cam_cond_embed_point_pre) in enumerate(zip(self.dec_blocks_point, self.dec_blocks_point_cross, self.cam_cond_encoder_point, self.cam_cond_embed_point, self.cam_cond_embed_point_pre)):
            f1_pre = feat_ref[i+1].reshape(B, (views+1), -1, C)[:,:1].view(B, -1, C)
            f2_pre = feat_ref[i+1].reshape(B, (views+1), -1, C)[:,1:].reshape(B*views, -1, C)
            f1_pre = f1_pre + cam_cond_embed_point_pre(pose_token_ref)
            f2_pre = f2_pre + cam_cond_embed_point_pre(pose_token_source)
            f_pre = torch.cat((f1_pre.view(B, 1, -1, C), f2_pre.view(B, views, -1, C)), 1)
            feat, _ = checkpoint(blk_cross, f.reshape(B*(views+1), -1, C), f_pre.reshape(B*(views+1), -1, C), pos.reshape(B*(views+1), -1, 2), pos.reshape(B*(views+1), -1, 2))
            feat = feat.view(B, views+1, -1, C).reshape(B, -1, C)
            feat = checkpoint(blk, feat, pos.reshape(B, -1, 2))
            feat = feat.view(B, views+1, -1, C)
            f1 = feat[:,:1].view(B, -1, C)
            f2 = feat[:,1:].reshape(B*views, -1, C)
            f1_cam = torch.cat((pose_token_ref, f1.view(B, -1, C)), 1)
            f2_cam = torch.cat((pose_token_source, f2.view(B*views, -1, C)), 1)
            f_cam = torch.cat((f1_cam, f2_cam), 0)
            f_cam = checkpoint(cam_cond, f_cam) # torch.Size([64, 769, 768])
            f_delta = f_cam[:,1:]
            f_cam = f_cam[:,:1]
            f_delta1 = f_delta[:B].view(B, -1, C)
            f_delta2 = f_delta[B:].view(B*views, -1, C)
            pose_token_ref = pose_token_ref.view(B, -1, C) + f_cam[:B].view(B, -1, C)
            pose_token_source = pose_token_source.view(B*views, -1, C) + f_cam[B:].view(B*views, -1, C)
            f1 = f1.view(B, -1, C) +  cam_cond_embed_point(f_delta1)
            f2 = f2.view(B*views, -1, C) + cam_cond_embed_point(f_delta2) 
            if i in self.idx_hook:
                f1 = f1.view(B, -1, C) + self.inject_stage3[hook_idx](self.enc_inject_stage3[hook_idx](low_token[i * 2][:,:1].view(B, -1, 1024)))
                f2 = f2.view(B*views, -1, C) + self.inject_stage3[hook_idx](self.enc_inject_stage3[hook_idx](low_token[i * 2][:,1:].reshape(B*views, -1, 1024)))
                hook_idx += 1
            f1 = f1.view(B, 1, -1 ,C)
            f2 = f2.view(B, views, -1 ,C)
            f = torch.cat((f1, f2), 1)
            final_output.append(f)
            f = f.view(B, -1 ,C)

        # normalize last output
        del final_output[1]  # duplicate with final_output[0]
        final_output[-1] = self.dec_norm_point(final_output[-1])
        return final_output
  
    def _decoder(self, f1, pos1, f2, pos2):
        final_output = [(f1, f2)]  # before projection
        # project to decoder dim
        f1 = self.decoder_embed(f1)
        f2 = self.decoder_embed(f2)
        B, views, P, C = f2.shape
        f1 = f1.view(B, -1 ,C)
        f2 = f2.view(B, -1 ,C)
        pos1 = pos1.view(B, -1, pos1.shape[-1])
        pos2 = pos2.view(B, -1, pos2.shape[-1])
        cam_tokens = []
        final_output.append((f1, f2))
        pose_token_ref, pose_token_source = self.pose_token_ref.to(f1.dtype).repeat(B,1,1).view(B, -1, C), self.pose_token_source.to(f1.dtype).repeat(B*views,1,1).view(B*views, -1, C)
        for i, (blk1, blk2, cam_cond, cam_cond_embed) in enumerate(zip(self.dec_blocks, self.dec_blocks2, self.cam_cond_encoder,  self.cam_cond_embed)):
            f1, _ = checkpoint(blk1, *final_output[-1][::+1], pos1, pos2)
            f2, _ = checkpoint(blk2, *final_output[-1][::-1], pos2, pos1)
            f1_cam = torch.cat((pose_token_ref, f1.view(B, -1, C)), 1)
            f2_cam = torch.cat((pose_token_source, f2.view(B*views, -1, C)), 1)
            f_cam = torch.cat((f1_cam, f2_cam), 0)
            f_cam = checkpoint(cam_cond, f_cam)
            f_delta = f_cam[:,1:]
            f_cam = f_cam[:,:1]
            f_delta1 = f_delta[:B].view(B, -1, C)
            f_delta2 = f_delta[B:].view(B*views, -1, C)
            pose_token_ref = pose_token_ref.view(B, -1, C) + f_cam[:B].view(B, -1, C)
            pose_token_source = pose_token_source.view(B*views, -1, C) + f_cam[B:].view(B*views, -1, C)
            cam_tokens.append((pose_token_ref, pose_token_source))
            f1 = f1.view(B, -1, C) + cam_cond_embed(f_delta1)
            f2 = f2.view(B*views, -1, C) + cam_cond_embed(f_delta2)
            f1 = f1.view(B, -1 ,C)
            f2 = f2.view(B, -1 ,C)
            # store the result
            final_output.append((f1, f2))

        # normalize last output
        del final_output[1]  # duplicate with final_output[0]
        cam_tokens[-1] = tuple(map(self.dec_cam_norm, cam_tokens[-1]))
        return zip(*cam_tokens)


    def forward_coarse_pose(self, view1, view2, enabled=True, dtype=torch.bfloat16):
        # encode the two images --> B,S,D
        batch_size, _, _, _  = view1[0]['img'].shape
        view_num = len(view2)
        with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
            shapes, feat, pos, shape_stage2, feat_stage2, pos_stage2, interm_features = self._encode_symmetrized(view1+view2) # shapes_coarse, out_coarse, pos_coarse, shapes, out, pos, interm_features
        feat1 = feat[:, :1].to(dtype)
        feat2 = feat[:, 1:].to(dtype)
        pos1 = pos[:, :1]
        pos2 = pos[:, 1:]
        shape1 = shapes[:, :1]
        shape2 = shapes[:, 1:]
        shape1_stage2 = shape_stage2[:, :1]
        shape2_stage2 = shape_stage2[:, 1:]
        feat1_stage2 = feat_stage2[:, :1]
        feat2_stage2 = feat_stage2[:, 1:]
        pos1_stage2 = pos_stage2[:, :1]
        pos2_stage2 = pos_stage2[:, 1:]
        (pose_token1, pose_token2)  = self._decoder(feat1, pos1, feat2, pos2)
        pred_cameras, _ = self.pose_head(batch_size, interm_feature1=pose_token1, interm_feature2=pose_token2, enabled=True, dtype=dtype)
        return feat1_stage2, pos1_stage2, feat2_stage2, pos2_stage2, pred_cameras, shape1_stage2, shape2_stage2, None, None, pose_token1, pose_token2, interm_features

    def forward(self, view1, view2, enabled=True, dtype=torch.bfloat16):
        if self.wogs:
            res1, res2, pred_cameras = self.forward_pointmap(view1, view2, enabled=enabled, dtype=dtype)
        else:
            res1, res2, pred_cameras = self.forward_gs(view1, view2, enabled=enabled, dtype=dtype)
        return res1, res2, pred_cameras
    
    
    def forward_gs(self, view1, view2, enabled=True, dtype=torch.bfloat16):
        raise NotImplementedError("This feature (novel view synthesis) has not been released yet.")

    def load_state_dict_posehead(self, ckpt, strict=True):
        # duplicate all weights for the second decoder if not present
        new_ckpt = {}
        for key, value in ckpt.items():
            new_key = '.'.join([key.split('.')[0] + '_pose_head']+ key.split('.')[1:]) 
            if new_key in dict(self.named_parameters()).keys():
                print(f'Loading {new_key} from checkpoint')
                new_ckpt[new_key] = ckpt[key]
        return self.load_state_dict(new_ckpt, strict=strict)
    
    
    def forward_pointmap(self, view1, view2, enabled=True, dtype=torch.bfloat16):
        # encode the two images --> B,S,D
        batch_size, _, _, _  = view1[0]['img'].shape
        view_num = len(view2)
        
        # coarse camera pose estimation
        feat1, pos1, feat2, pos2, pred_cameras_coarse, shape1, shape2, res1_stage1, res2_stage1, pose_token1, pose_token2, interm_features = self.forward_coarse_pose(view1, view2, enabled=enabled, dtype=dtype)
        
        if self.wpose == False:
            trans = pred_cameras_coarse[-1]['T'].float().detach().clone()
            trans = trans.reshape(batch_size, -1, 3)
            quaternion_R_pred = pred_cameras_coarse[-1]['quaternion_R'].reshape(batch_size, -1, 4).float().detach().clone()
        else:
            ref_camera_pose = torch.cat([view['camera_pose'] for view in view1], 0).double()
            trajectory = torch.cat([view['camera_pose'] for view in view1 + view2], 0).double()
            in_camera1 = closed_form_inverse(ref_camera_pose)
            trajectory = torch.bmm(in_camera1.repeat(trajectory.shape[0],1,1), trajectory) 
            quaternion_R_pred = matrix_to_quaternion(trajectory[:, :3, :3]).float().reshape(batch_size, -1, 4)
            trans = trajectory[:, :3, 3].float().reshape(batch_size, -1, 3)
            gt_quaternion_R = quaternion_R_pred
            gt_trans = trans
        
        size =  (trans.norm(dim=-1, keepdim=True).mean(dim=-2, keepdim=True) + 1e-8)
        trans_pred = trans / size
        camera_embed = torch.cat((quaternion_R_pred, trans_pred), -1)
        camera_embed1 = camera_embed[:, :1].to(dtype)
        camera_embed2 = camera_embed[:, 1:].to(dtype)
        
        # fine camera pose estimation + camera-centric geometry estimation
        dec_fine, (pose_token1_fine, pose_token2_fine) = self._decoder_stage2(feat1, pos1, feat2, pos2, camera_embed1, camera_embed2, interm_features)
        shape = torch.cat((shape1, shape2), 1)
        res1 = self._downstream_head(1, [tok.to(dtype).reshape(-1, tok.shape[-2], tok.shape[-1]) for tok in dec_fine], shape.reshape(-1, 2))
        res1.pop('desc')
        
        for key in res1.keys():
            res1[key] = res1[key].unflatten(0, (batch_size, view_num+1)).float()
        with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
            pred_cameras, _ = self.pose_head_stage2(batch_size, interm_feature1=pose_token1_fine, interm_feature2=pose_token2_fine, enabled=True, dtype=torch.float32)

        if self.wpose == False:
            trans = pred_cameras[-1]['T'].float().detach().clone()
            quaternion_R_pred = pred_cameras[-1]['quaternion_R'].reshape(batch_size, -1, 4).float().detach().clone()
        else:
            quaternion_R_pred = gt_quaternion_R
            trans = gt_trans
            
        size =  (trans.norm(dim=-1, keepdim=True).mean(dim=-2, keepdim=True) + 1e-8)
        trans_pred = trans / size
        quaternion_R_noise = quaternion_R_pred
        trans_noise = trans_pred
        camera_embed = torch.cat((quaternion_R_noise, trans_noise), -1)
        camera_embed1 = camera_embed[:, :1]
        camera_embed2 = camera_embed[:, 1:]
        pred_cameras = pred_cameras_coarse + pred_cameras
        
        # global geometry estimation
        dec_fine_stage2 = self._decoder_stage3(dec_fine, pos1, pos2, camera_embed1, camera_embed2, interm_features)
        with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
            res2 = self._downstream_head(2, [tok.float().reshape(-1, tok.shape[-2], tok.shape[-1]) for tok in dec_fine_stage2], shape.reshape(-1, 2))
        res2.pop('desc')
        for key in res2.keys():
            res2[key] = res2[key].unflatten(0, (batch_size, view_num+1)).float()
        return res1, res2, pred_cameras