File size: 28,033 Bytes
91126af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import torch
import copy
import torch.nn as nn
import torch.nn.functional as F
import os
from dust3r.utils.geometry import inv, geotrf, normalize_pointcloud, closed_form_inverse
from mast3r.catmlp_dpt_head import mast3r_head_factory
from mast3r.vgg_pose_head import CameraPredictor, CameraPredictor_clean, Mlp
from mast3r.shallow_cnn import FeatureNet
import mast3r.utils.path_to_dust3r # noqa
from dust3r.model import AsymmetricCroCo3DStereo # noqa
from dust3r.utils.misc import transpose_to_landscape, freeze_all_params # noqa
inf = float('inf')
from dust3r.patch_embed import get_patch_embed
from torch.utils.checkpoint import checkpoint
from pytorch3d.transforms.rotation_conversions import matrix_to_quaternion
def load_model(model_path, device, verbose=True):
if verbose:
print('... loading model from', model_path)
ckpt = torch.load(model_path, map_location='cpu')
args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R")
if 'landscape_only' not in args:
args = args[:-1] + ', landscape_only=False)'
else:
args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False')
assert "landscape_only=False" in args
if verbose:
print(f"instantiating : {args}")
net = eval(args)
s = net.load_state_dict(ckpt['model'], strict=False)
if verbose:
print(s)
return net.to(device)
import torch
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
class AsymmetricMASt3R(AsymmetricCroCo3DStereo):
def __init__(self, wpose=False, wogs=True, desc_mode=('norm'), two_confs=False, desc_conf_mode=None, **kwargs):
self.desc_mode = desc_mode
self.two_confs = two_confs
self.desc_conf_mode = desc_conf_mode
self.wogs = wogs
self.wpose = wpose
super().__init__(**kwargs)
# Global Geometry Projector
self.dec_blocks_point = copy.deepcopy(self.dec_blocks_fine)
self.cam_cond_encoder_point = copy.deepcopy(self.cam_cond_encoder)
self.decoder_embed_point = copy.deepcopy(self.decoder_embed)
self.dec_norm_point = copy.deepcopy(self.dec_norm)
self.pose_token_ref_point = copy.deepcopy(self.pose_token_ref)
self.pose_token_source_point = copy.deepcopy(self.pose_token_source)
self.cam_cond_embed_point = copy.deepcopy(self.cam_cond_embed)
self.cam_cond_embed_point_pre = copy.deepcopy(self.cam_cond_embed)
self.inject_stage3 = nn.ModuleList([nn.Linear(self.enc_embed_dim, self.dec_embed_dim, bias=False) for i in range(3)])
self.enc_inject_stage3 = nn.ModuleList([copy.deepcopy(self.enc_norm) for i in range(3)])
# Camera-centric Geometry Estimator
self.cam_cond_encoder_fine = copy.deepcopy(self.cam_cond_encoder)
self.adaLN_modulation = nn.ModuleList([nn.Sequential(
nn.SiLU(inplace=False),
nn.Linear(self.dec_embed_dim, 3 * self.dec_embed_dim, bias=True)
) for _ in range(len(self.dec_blocks_fine))])
for block in self.adaLN_modulation:
nn.init.constant_(block[-1].weight, 0)
nn.init.constant_(block[-1].bias, 0)
self.decoder_embed_fine = copy.deepcopy(self.decoder_embed)
self.dec_cam_norm_fine = copy.deepcopy(self.dec_cam_norm)
self.dec_norm_fine = copy.deepcopy(self.dec_norm)
self.pose_token_ref_fine = copy.deepcopy(self.pose_token_ref)
self.pose_token_source_fine = copy.deepcopy(self.pose_token_source)
self.cam_cond_embed_fine = copy.deepcopy(self.cam_cond_embed)
self.inject_stage2 = nn.ModuleList([nn.Linear(self.enc_embed_dim, self.dec_embed_dim, bias=False) for i in range(3)])
self.enc_inject_stage2 = nn.ModuleList([copy.deepcopy(self.enc_norm) for i in range(3)])
# Encoder
self.enc_norm_coarse = copy.deepcopy(self.enc_norm)
self.embed_pose = Mlp(7, hidden_features=self.dec_embed_dim, out_features=self.dec_embed_dim)
# Shallow CNNs
self.cnn_wobn = FeatureNet()
self.cnn_proj = nn.Conv2d(64, 16, 3, 1, 1)
self.cnn_fusion = nn.Conv2d(32*3, 64, 3, 1, 1)
for i in range(3):
nn.init.constant_(self.inject_stage2[i].weight, 0.)
nn.init.constant_(self.inject_stage3[i].weight, 0.)
self.idx_hook = [2, 5, 8]
self.encode_feature_landscape = transpose_to_landscape(self.encode_feature, activate=True)
if self.wogs == False:
self.decoder_embed_stage2 = copy.deepcopy(self.decoder_embed)
nn.init.constant_(self.decoder_embed_stage2.weight, 0.)
self.decoder_embed_fxfycxcy = Mlp(4, hidden_features=self.dec_embed_dim, out_features=self.dec_embed_dim)
nn.init.constant_(self.decoder_embed_fxfycxcy.fc2.weight, 0.)
nn.init.constant_(self.decoder_embed_fxfycxcy.fc2.bias, 0.)
def load_state_dict_stage1(self, ckpt, **kw):
# duplicate all weights for the second decoder if not present
new_ckpt = dict(ckpt)
return super().load_state_dict(new_ckpt, **kw)
def load_state_dict(self, ckpt, **kw):
# duplicate all weights for the second decoder if not present
new_ckpt = dict(ckpt)
if self.head_type == 'dpt_gs':
for key, value in ckpt.items():
if 'dpt.head.4' in key:
state_dict = self.state_dict()
state_dict[key][:value.shape[0]] = value
new_ckpt[key] = state_dict[key]
return super().load_state_dict(new_ckpt, **kw)
def encode_feature(self, imgs_vgg, image_size):
H, W = image_size
imgs_vgg = imgs_vgg[0].permute(0,3,1,2)
feat_vgg3, feat_vgg2, feat_vgg1 = self.cnn_wobn(imgs_vgg)
feat_vgg2 = F.interpolate(feat_vgg2.float(), (H, W), mode='bilinear', align_corners=True)
feat_vgg3 = F.interpolate(feat_vgg3.float(), (H, W), mode='bilinear', align_corners=True)
feat_vgg = self.cnn_fusion(torch.cat((feat_vgg1.float(), feat_vgg2, feat_vgg3), 1))
feat_vgg_detail = self.cnn_proj(feat_vgg)
N, C, h, w = feat_vgg.shape
imgs_vgg = feat_vgg.reshape(N, C, -1).permute(0,2,1)
N, P, C = imgs_vgg.shape
imgs_vgg = imgs_vgg.reshape(N, P, -1, 64)
imgs_vgg = imgs_vgg.permute(0, 2, 1, 3)
x = torch.arange(w).to(imgs_vgg)
y = torch.arange(h).to(imgs_vgg)
xy = torch.meshgrid(x, y, indexing='xy')
pos_full = torch.cat((xy[0].unsqueeze(-1), xy[1].unsqueeze(-1)), -1).unsqueeze(0)
imgs_vgg = imgs_vgg + self.rope(torch.ones_like(imgs_vgg).to(imgs_vgg), pos_full.reshape(1,-1,2).repeat(N, 1, 1).long()).to(imgs_vgg)
imgs_vgg = imgs_vgg.permute(0, 2, 1, 3)
imgs_vgg = imgs_vgg.reshape(N, -1, C).permute(0, 2, 1)
imgs_vgg = imgs_vgg.reshape(N, C, h, w)
return {'imgs_vgg': imgs_vgg.permute(0, 2, 3, 1), 'feat_vgg_detail': feat_vgg_detail.permute(0, 2, 3, 1)}
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kw):
if os.path.isfile(pretrained_model_name_or_path):
return load_model(pretrained_model_name_or_path, device='cpu')
else:
return super(AsymmetricMASt3R, cls).from_pretrained(pretrained_model_name_or_path, **kw)
def _encode_image(self, image, true_shape):
# embed the image into patches (x has size B x Npatches x C)
interm_features = []
x, pos = self.patch_embed(image, true_shape=true_shape)
# add positional embedding without cls token
assert self.enc_pos_embed is None
# now apply the transformer encoder and normalization
for blk in self.enc_blocks:
interm_features.append(x)
x = blk(x, pos)
x = self.enc_norm(x)
return x, pos, interm_features
def _encode_symmetrized(self, views):
imgs = [view['img'] for view in views]
shapes = [view['true_shape'] for view in views]
imgs = torch.stack((imgs), dim=1)
B, views, _, H, W = imgs.shape
dtype = imgs.dtype
imgs = imgs.view(-1, *imgs.shape[2:])
shapes = torch.stack((shapes), dim=1)
shapes = shapes.view(-1, *shapes.shape[2:])
out, pos, interm_features = self._encode_image(imgs, shapes)
out = out.to(dtype)
for i in range(len(interm_features)):
interm_features[i] = interm_features[i].to(dtype)
interm_features[i] = interm_features[i].reshape(B, views, *out.shape[1:])
true_shape = shapes
W //= 64
H //= 64
n_tokens = H * W
x_coarse = out.new_zeros((B*views, n_tokens, self.patch_embed_coarse2.embed_dim)).to(dtype)
pos_coarse = out.new_zeros((B*views, n_tokens, 2), dtype=torch.int64)
height, width = true_shape.T
is_landscape = (width >= height)
is_portrait = ~is_landscape
fine_token = out.view(B*views, H * 4, W * 4, -1).permute(0, 3, 1, 2)
x_coarse[is_landscape] = self.patch_embed_coarse2.proj(fine_token[is_landscape]).permute(0, 2, 3, 1).flatten(1, 2)
x_coarse[is_portrait] = self.patch_embed_coarse2.proj(fine_token[is_portrait].swapaxes(-1, -2)).permute(0, 2, 3, 1).flatten(1, 2)
pos_coarse[is_landscape] = self.patch_embed_test_.position_getter(1, H, W, pos.device)
pos_coarse[is_portrait] = self.patch_embed_test_.position_getter(1, W, H, pos.device)
x_coarse = self.enc_norm_coarse(x_coarse)
out_coarse = x_coarse.reshape(B, views, *x_coarse.shape[1:]).to(dtype)
pos_coarse = pos_coarse.reshape(B, views, *pos_coarse.shape[1:])
shapes_coarse = shapes.reshape(B, views, *shapes.shape[1:]) // 4
out = out.reshape(B, views, *out.shape[1:])
pos = pos.reshape(B, views, *pos.shape[1:])
shapes = shapes.reshape(B, views, *shapes.shape[1:])
return shapes_coarse, out_coarse, pos_coarse, shapes, out, pos, interm_features
def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim)
self.patch_embed_coarse = get_patch_embed(self.patch_embed_cls, img_size, 2, enc_embed_dim, input_dim=enc_embed_dim)
self.patch_embed_coarse2 = get_patch_embed(self.patch_embed_cls, img_size, 4, enc_embed_dim, input_dim=enc_embed_dim)
# self.patch_embed_test = get_patch_embed(self.patch_embed_cls, img_size, 2 * patch_size, enc_embed_dim)
self.patch_embed_test_ = get_patch_embed(self.patch_embed_cls, img_size, 4 * patch_size, enc_embed_dim)
# self.patch_embed_fine = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim, input_dim=64)
def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size, **kw):
assert img_size[0] % patch_size == 0 and img_size[
1] % patch_size == 0, f'{img_size=} must be multiple of {patch_size=}'
self.output_mode = output_mode
self.head_type = head_type
self.depth_mode = depth_mode
self.conf_mode = conf_mode
if self.desc_conf_mode is None:
self.desc_conf_mode = conf_mode
# allocate heads
self.downstream_head1 = mast3r_head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
self.downstream_head2 = mast3r_head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
# magic wrapper
self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)
self.pose_head = CameraPredictor_clean(hood_idx=self.downstream_head2.dpt.hooks, trunk_depth=4, rope=self.rope)
self.pose_head_stage2 = CameraPredictor_clean(hood_idx=self.downstream_head2.dpt.hooks, trunk_depth=4, rope=self.rope)
self.downstream_head4 = mast3r_head_factory('sh', output_mode, self, has_conf=bool(conf_mode))
self.head4 = transpose_to_landscape(self.downstream_head4, activate=landscape_only)
def _decoder_stage2(self, f1, pos1, f2, pos2, pose1, pose2, low_token=None):
f = torch.cat((f1, f2), 1)
pos = torch.cat((pos1, pos2), 1)
final_output = [f] # before projection
f = self.decoder_embed_fine(f)
B, views, P, C = f.shape
f = f.view(B, -1 ,C)
pos = pos.view(B, -1, pos.shape[-1])
cam_tokens = []
final_output.append(f)
pose1_embed = self.embed_pose(pose1)
pose2_embed = self.embed_pose(pose2)
pose_embed = torch.cat((pose1_embed, pose2_embed), 1)
views = views - 1
pose_token_ref, pose_token_source = self.pose_token_ref_fine.to(f1.dtype).repeat(B,1,1).view(B, -1, C), self.pose_token_source_fine.to(f1.dtype).repeat(B*views,1,1).view(B*views, -1, C)
dtype = f.dtype
hook_idx = 0
for i, (blk1, cam_cond, cam_cond_embed_fine, adaLN_modulation) in enumerate(zip(self.dec_blocks_fine, self.cam_cond_encoder_fine, self.cam_cond_embed_fine, self.adaLN_modulation)):
shift_msa, scale_msa, gate_msa = adaLN_modulation(pose_embed).chunk(3, dim=-1)
pose_token_ref = modulate(pose_token_ref.reshape(B, -1, C), shift_msa[:,:1].reshape(B,-1), scale_msa[:,:1].reshape(B,-1))
pose_token_source = modulate(pose_token_source.reshape(B*views, -1, C), shift_msa[:,1:].reshape(B*views,-1), scale_msa[:,1:].reshape(B*views,-1))
feat = checkpoint(blk1, f, pos)
feat = feat.view(B, views+1, -1, C)
f1 = feat[:,:1].view(B, -1, C)
f2 = feat[:,1:].reshape(B*views, -1, C)
f1_cam = torch.cat((pose_token_ref, f1.view(B, -1, C)), 1)
f2_cam = torch.cat((pose_token_source, f2.view(B*views, -1, C)), 1)
f_cam = torch.cat((f1_cam, f2_cam), 0)
f_cam = checkpoint(cam_cond, f_cam) # torch.Size([64, 769, 768])
f_delta = f_cam[:,1:]
f_cam = f_cam[:,:1]
f_delta1 = f_delta[:B].view(B, -1, C)
f_delta2 = f_delta[B:].view(B*views, -1, C)
pose_token_ref = pose_token_ref.view(B, -1, C) + f_cam[:B].view(B, -1, C)
pose_token_source = pose_token_source.view(B*views, -1, C) + f_cam[B:].view(B*views, -1, C)
cam_tokens.append((pose_token_ref, pose_token_source))
f1 = f1.view(B, -1, C) + cam_cond_embed_fine(f_delta1)
f2 = f2.view(B*views, -1, C) + cam_cond_embed_fine(f_delta2)
if i in self.idx_hook:
f1 = f1.view(B, -1, C) + self.inject_stage2[hook_idx](self.enc_inject_stage2[hook_idx](low_token[i * 2][:,:1].view(B, -1, 1024)))
f2 = f2.view(B*views, -1, C) + self.inject_stage2[hook_idx](self.enc_inject_stage2[hook_idx](low_token[i * 2][:,1:].reshape(B*views, -1, 1024)))
hook_idx += 1
f1 = f1.view(B, 1, -1 ,C)
f2 = f2.view(B, views, -1 ,C)
f = torch.cat((f1, f2), 1)
final_output.append(f)
f = f.view(B, -1 ,C)
# normalize last output
del final_output[1] # duplicate with final_output[0]
final_output[-1] = self.dec_norm_fine(final_output[-1])
cam_tokens[-1] = tuple(map(self.dec_cam_norm_fine, cam_tokens[-1]))
return final_output, zip(*cam_tokens)
def _decoder_stage3(self, feat_ref, pos1, pos2, pose1, pose2, low_token=None, feat_stage2=None, fxfycxcy1=None, fxfycxcy2=None):
final_output = [feat_ref[0]] # before projection
# project to decoder dim
final_output.append(feat_ref[1])
with torch.cuda.amp.autocast(enabled=False,dtype=torch.float32):
pose1_embed = self.embed_pose(pose1)
pose2_embed = self.embed_pose(pose2)
pose_embed = torch.cat((pose1_embed, pose2_embed), 1)
B, views, P, C = feat_ref[-1].shape
if feat_stage2 is None:
f = self.decoder_embed_point(feat_ref[0])
else:
f = self.decoder_embed_point(feat_ref[0]) + self.decoder_embed_stage2(feat_stage2)
views = views - 1
dtype = f.dtype
pose_token_ref, pose_token_source = self.pose_token_ref_point.to(dtype).repeat(B,1,1).view(B, -1, C), self.pose_token_source_point.to(dtype).repeat(B*views,1,1).view(B*views, -1, C)
pos = torch.cat((pos1, pos2), 1)
if fxfycxcy1 is not None:
with torch.cuda.amp.autocast(enabled=False,dtype=torch.float32):
fxfycxcy1 = self.decoder_embed_fxfycxcy(fxfycxcy1)
fxfycxcy2 = self.decoder_embed_fxfycxcy(fxfycxcy2)
pose1_embed = pose1_embed + fxfycxcy1
pose2_embed = pose2_embed + fxfycxcy2
pose1_embed = pose1_embed.to(dtype)
pose2_embed = pose2_embed.to(dtype)
pose_token_ref = pose_token_ref + pose1_embed
pose_token_source = pose_token_source + pose2_embed.view(B*views, -1, C)
hook_idx = 0
for i, (blk, blk_cross, cam_cond, cam_cond_embed_point, cam_cond_embed_point_pre) in enumerate(zip(self.dec_blocks_point, self.dec_blocks_point_cross, self.cam_cond_encoder_point, self.cam_cond_embed_point, self.cam_cond_embed_point_pre)):
f1_pre = feat_ref[i+1].reshape(B, (views+1), -1, C)[:,:1].view(B, -1, C)
f2_pre = feat_ref[i+1].reshape(B, (views+1), -1, C)[:,1:].reshape(B*views, -1, C)
f1_pre = f1_pre + cam_cond_embed_point_pre(pose_token_ref)
f2_pre = f2_pre + cam_cond_embed_point_pre(pose_token_source)
f_pre = torch.cat((f1_pre.view(B, 1, -1, C), f2_pre.view(B, views, -1, C)), 1)
feat, _ = checkpoint(blk_cross, f.reshape(B*(views+1), -1, C), f_pre.reshape(B*(views+1), -1, C), pos.reshape(B*(views+1), -1, 2), pos.reshape(B*(views+1), -1, 2))
feat = feat.view(B, views+1, -1, C).reshape(B, -1, C)
feat = checkpoint(blk, feat, pos.reshape(B, -1, 2))
feat = feat.view(B, views+1, -1, C)
f1 = feat[:,:1].view(B, -1, C)
f2 = feat[:,1:].reshape(B*views, -1, C)
f1_cam = torch.cat((pose_token_ref, f1.view(B, -1, C)), 1)
f2_cam = torch.cat((pose_token_source, f2.view(B*views, -1, C)), 1)
f_cam = torch.cat((f1_cam, f2_cam), 0)
f_cam = checkpoint(cam_cond, f_cam) # torch.Size([64, 769, 768])
f_delta = f_cam[:,1:]
f_cam = f_cam[:,:1]
f_delta1 = f_delta[:B].view(B, -1, C)
f_delta2 = f_delta[B:].view(B*views, -1, C)
pose_token_ref = pose_token_ref.view(B, -1, C) + f_cam[:B].view(B, -1, C)
pose_token_source = pose_token_source.view(B*views, -1, C) + f_cam[B:].view(B*views, -1, C)
f1 = f1.view(B, -1, C) + cam_cond_embed_point(f_delta1)
f2 = f2.view(B*views, -1, C) + cam_cond_embed_point(f_delta2)
if i in self.idx_hook:
f1 = f1.view(B, -1, C) + self.inject_stage3[hook_idx](self.enc_inject_stage3[hook_idx](low_token[i * 2][:,:1].view(B, -1, 1024)))
f2 = f2.view(B*views, -1, C) + self.inject_stage3[hook_idx](self.enc_inject_stage3[hook_idx](low_token[i * 2][:,1:].reshape(B*views, -1, 1024)))
hook_idx += 1
f1 = f1.view(B, 1, -1 ,C)
f2 = f2.view(B, views, -1 ,C)
f = torch.cat((f1, f2), 1)
final_output.append(f)
f = f.view(B, -1 ,C)
# normalize last output
del final_output[1] # duplicate with final_output[0]
final_output[-1] = self.dec_norm_point(final_output[-1])
return final_output
def _decoder(self, f1, pos1, f2, pos2):
final_output = [(f1, f2)] # before projection
# project to decoder dim
f1 = self.decoder_embed(f1)
f2 = self.decoder_embed(f2)
B, views, P, C = f2.shape
f1 = f1.view(B, -1 ,C)
f2 = f2.view(B, -1 ,C)
pos1 = pos1.view(B, -1, pos1.shape[-1])
pos2 = pos2.view(B, -1, pos2.shape[-1])
cam_tokens = []
final_output.append((f1, f2))
pose_token_ref, pose_token_source = self.pose_token_ref.to(f1.dtype).repeat(B,1,1).view(B, -1, C), self.pose_token_source.to(f1.dtype).repeat(B*views,1,1).view(B*views, -1, C)
for i, (blk1, blk2, cam_cond, cam_cond_embed) in enumerate(zip(self.dec_blocks, self.dec_blocks2, self.cam_cond_encoder, self.cam_cond_embed)):
f1, _ = checkpoint(blk1, *final_output[-1][::+1], pos1, pos2)
f2, _ = checkpoint(blk2, *final_output[-1][::-1], pos2, pos1)
f1_cam = torch.cat((pose_token_ref, f1.view(B, -1, C)), 1)
f2_cam = torch.cat((pose_token_source, f2.view(B*views, -1, C)), 1)
f_cam = torch.cat((f1_cam, f2_cam), 0)
f_cam = checkpoint(cam_cond, f_cam)
f_delta = f_cam[:,1:]
f_cam = f_cam[:,:1]
f_delta1 = f_delta[:B].view(B, -1, C)
f_delta2 = f_delta[B:].view(B*views, -1, C)
pose_token_ref = pose_token_ref.view(B, -1, C) + f_cam[:B].view(B, -1, C)
pose_token_source = pose_token_source.view(B*views, -1, C) + f_cam[B:].view(B*views, -1, C)
cam_tokens.append((pose_token_ref, pose_token_source))
f1 = f1.view(B, -1, C) + cam_cond_embed(f_delta1)
f2 = f2.view(B*views, -1, C) + cam_cond_embed(f_delta2)
f1 = f1.view(B, -1 ,C)
f2 = f2.view(B, -1 ,C)
# store the result
final_output.append((f1, f2))
# normalize last output
del final_output[1] # duplicate with final_output[0]
cam_tokens[-1] = tuple(map(self.dec_cam_norm, cam_tokens[-1]))
return zip(*cam_tokens)
def forward_coarse_pose(self, view1, view2, enabled=True, dtype=torch.bfloat16):
# encode the two images --> B,S,D
batch_size, _, _, _ = view1[0]['img'].shape
view_num = len(view2)
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
shapes, feat, pos, shape_stage2, feat_stage2, pos_stage2, interm_features = self._encode_symmetrized(view1+view2) # shapes_coarse, out_coarse, pos_coarse, shapes, out, pos, interm_features
feat1 = feat[:, :1].to(dtype)
feat2 = feat[:, 1:].to(dtype)
pos1 = pos[:, :1]
pos2 = pos[:, 1:]
shape1 = shapes[:, :1]
shape2 = shapes[:, 1:]
shape1_stage2 = shape_stage2[:, :1]
shape2_stage2 = shape_stage2[:, 1:]
feat1_stage2 = feat_stage2[:, :1]
feat2_stage2 = feat_stage2[:, 1:]
pos1_stage2 = pos_stage2[:, :1]
pos2_stage2 = pos_stage2[:, 1:]
(pose_token1, pose_token2) = self._decoder(feat1, pos1, feat2, pos2)
pred_cameras, _ = self.pose_head(batch_size, interm_feature1=pose_token1, interm_feature2=pose_token2, enabled=True, dtype=dtype)
return feat1_stage2, pos1_stage2, feat2_stage2, pos2_stage2, pred_cameras, shape1_stage2, shape2_stage2, None, None, pose_token1, pose_token2, interm_features
def forward(self, view1, view2, enabled=True, dtype=torch.bfloat16):
if self.wogs:
res1, res2, pred_cameras = self.forward_pointmap(view1, view2, enabled=enabled, dtype=dtype)
else:
res1, res2, pred_cameras = self.forward_gs(view1, view2, enabled=enabled, dtype=dtype)
return res1, res2, pred_cameras
def forward_gs(self, view1, view2, enabled=True, dtype=torch.bfloat16):
raise NotImplementedError("This feature (novel view synthesis) has not been released yet.")
def load_state_dict_posehead(self, ckpt, strict=True):
# duplicate all weights for the second decoder if not present
new_ckpt = {}
for key, value in ckpt.items():
new_key = '.'.join([key.split('.')[0] + '_pose_head']+ key.split('.')[1:])
if new_key in dict(self.named_parameters()).keys():
print(f'Loading {new_key} from checkpoint')
new_ckpt[new_key] = ckpt[key]
return self.load_state_dict(new_ckpt, strict=strict)
def forward_pointmap(self, view1, view2, enabled=True, dtype=torch.bfloat16):
# encode the two images --> B,S,D
batch_size, _, _, _ = view1[0]['img'].shape
view_num = len(view2)
# coarse camera pose estimation
feat1, pos1, feat2, pos2, pred_cameras_coarse, shape1, shape2, res1_stage1, res2_stage1, pose_token1, pose_token2, interm_features = self.forward_coarse_pose(view1, view2, enabled=enabled, dtype=dtype)
if self.wpose == False:
trans = pred_cameras_coarse[-1]['T'].float().detach().clone()
trans = trans.reshape(batch_size, -1, 3)
quaternion_R_pred = pred_cameras_coarse[-1]['quaternion_R'].reshape(batch_size, -1, 4).float().detach().clone()
else:
ref_camera_pose = torch.cat([view['camera_pose'] for view in view1], 0).double()
trajectory = torch.cat([view['camera_pose'] for view in view1 + view2], 0).double()
in_camera1 = closed_form_inverse(ref_camera_pose)
trajectory = torch.bmm(in_camera1.repeat(trajectory.shape[0],1,1), trajectory)
quaternion_R_pred = matrix_to_quaternion(trajectory[:, :3, :3]).float().reshape(batch_size, -1, 4)
trans = trajectory[:, :3, 3].float().reshape(batch_size, -1, 3)
gt_quaternion_R = quaternion_R_pred
gt_trans = trans
size = (trans.norm(dim=-1, keepdim=True).mean(dim=-2, keepdim=True) + 1e-8)
trans_pred = trans / size
camera_embed = torch.cat((quaternion_R_pred, trans_pred), -1)
camera_embed1 = camera_embed[:, :1].to(dtype)
camera_embed2 = camera_embed[:, 1:].to(dtype)
# fine camera pose estimation + camera-centric geometry estimation
dec_fine, (pose_token1_fine, pose_token2_fine) = self._decoder_stage2(feat1, pos1, feat2, pos2, camera_embed1, camera_embed2, interm_features)
shape = torch.cat((shape1, shape2), 1)
res1 = self._downstream_head(1, [tok.to(dtype).reshape(-1, tok.shape[-2], tok.shape[-1]) for tok in dec_fine], shape.reshape(-1, 2))
res1.pop('desc')
for key in res1.keys():
res1[key] = res1[key].unflatten(0, (batch_size, view_num+1)).float()
with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
pred_cameras, _ = self.pose_head_stage2(batch_size, interm_feature1=pose_token1_fine, interm_feature2=pose_token2_fine, enabled=True, dtype=torch.float32)
if self.wpose == False:
trans = pred_cameras[-1]['T'].float().detach().clone()
quaternion_R_pred = pred_cameras[-1]['quaternion_R'].reshape(batch_size, -1, 4).float().detach().clone()
else:
quaternion_R_pred = gt_quaternion_R
trans = gt_trans
size = (trans.norm(dim=-1, keepdim=True).mean(dim=-2, keepdim=True) + 1e-8)
trans_pred = trans / size
quaternion_R_noise = quaternion_R_pred
trans_noise = trans_pred
camera_embed = torch.cat((quaternion_R_noise, trans_noise), -1)
camera_embed1 = camera_embed[:, :1]
camera_embed2 = camera_embed[:, 1:]
pred_cameras = pred_cameras_coarse + pred_cameras
# global geometry estimation
dec_fine_stage2 = self._decoder_stage3(dec_fine, pos1, pos2, camera_embed1, camera_embed2, interm_features)
with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
res2 = self._downstream_head(2, [tok.float().reshape(-1, tok.shape[-2], tok.shape[-1]) for tok in dec_fine_stage2], shape.reshape(-1, 2))
res2.pop('desc')
for key in res2.keys():
res2[key] = res2[key].unflatten(0, (batch_size, view_num+1)).float()
return res1, res2, pred_cameras
|