File size: 13,002 Bytes
91126af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Modified from https://github.com/facebookresearch/PoseDiffusion
# and https://github.com/facebookresearch/co-tracker/tree/main


import torch
import torch.nn as nn
import torch.nn.functional as F

from typing import Optional, Tuple, Union
from einops import rearrange, repeat
from pytorch3d.renderer import HarmonicEmbedding
# from pytorch3d.transforms.rotation_conversions import matrix_to_quaternion, quaternion_to_matrix
EPS = 1e-9
from pytorch3d.transforms.rotation_conversions import matrix_to_quaternion, quaternion_to_matrix

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe

from typing import Optional


def pose_encoding_to_camera(
    pose_encoding,
    pose_encoding_type="vgg",
    log_focal_length_bias=1.,
    min_focal_length=0.1,
    max_focal_length=30,
    return_dict=False,
):
    """
    Args:
        pose_encoding: A tensor of shape `BxNxC`, containing a batch of
                        `BxN` `C`-dimensional pose encodings.
        pose_encoding_type: The type of pose encoding,
    """
    pose_encoding_reshaped = pose_encoding#.reshape(-1, pose_encoding.shape[-1])  # Reshape to BNxC
    if pose_encoding_type == "train":
        # 3 for absT, 4 for quaR, 2 for absFL
        abs_T = pose_encoding_reshaped[..., :3]
        quaternion_R = pose_encoding_reshaped[..., 3:7]
        R = quaternion_to_matrix(quaternion_R)
        log_focal_length = pose_encoding_reshaped[..., 7:9]
        # log_focal_length_bias was the hyperparameter
        # to ensure the mean of logFL close to 0 during training
        # Now converted back
        m = nn.Softplus()
        log_focal_length = m(log_focal_length)
        # clamp to avoid weird fl values
        focal_length = torch.clamp(log_focal_length, min=min_focal_length, max=max_focal_length)
    elif pose_encoding_type == "train_fusion":
        # 3 for absT, 4 for quaR, 2 for absF
        abs_T = pose_encoding_reshaped[:, :3]
        quaternion_R = pose_encoding_reshaped[:, 3:7]
        R = quaternion_to_matrix(quaternion_R)
        scale = pose_encoding_reshaped[:, 7:8]
        # log_focal_length_bias was the hyperparameter
        # to ensure the mean of logFL close to 0 during training
        # Now converted back
        focal_length = softplus(scale)
        # clamp to avoid weird fl values
        # focal_length = torch.clamp(focal_length, min=min_focal_length, max=max_focal_length)
    elif pose_encoding_type == "absT_quaR_logFL":
        # 3 for absT, 4 for quaR, 2 for absFL
        abs_T = pose_encoding_reshaped[:, :3]
        quaternion_R = pose_encoding_reshaped[:, 3:7]
        R = quaternion_to_matrix(quaternion_R)
        log_focal_length = pose_encoding_reshaped[:, 7:9]
        # log_focal_length_bias was the hyperparameter
        # to ensure the mean of logFL close to 0 during training
        # Now converted back
        focal_length = (log_focal_length + log_focal_length_bias).exp()
        # clamp to avoid weird fl values
        focal_length = torch.clamp(focal_length, min=min_focal_length, max=max_focal_length)
    elif pose_encoding_type == "absT_quaR_OneFL":
        # 3 for absT, 4 for quaR, 1 for absFL
        # [absolute translation, quaternion rotation, normalized focal length]
        abs_T = pose_encoding_reshaped[:, :3]
        quaternion_R = pose_encoding_reshaped[:, 3:7]
        R = quaternion_to_matrix(quaternion_R)
        focal_length = pose_encoding_reshaped[:, 7:8]
        focal_length = torch.clamp(focal_length, min=min_focal_length, max=max_focal_length)
    else:
        raise ValueError(f"Unknown pose encoding {pose_encoding_type}")

    # if return_dict:
    return {"focal_length": focal_length, "R": R, "T": abs_T, "quaternion_R": quaternion_R}

    # pred_cameras = PerspectiveCameras(focal_length=focal_length, R=R, T=abs_T, device=R.device)
    # return pred_cameras


def camera_to_pose_encoding(
    camera, pose_encoding_type="absT_quaR_logFL", log_focal_length_bias=1.8, min_focal_length=0.1, max_focal_length=30
):
    """
    Inverse to pose_encoding_to_camera
    """
    if pose_encoding_type == "absT_quaR_logFL":
        # Convert rotation matrix to quaternion
        quaternion_R = matrix_to_quaternion(camera.R)

        # Calculate log_focal_length
        log_focal_length = (
            torch.log(torch.clamp(camera.focal_length, min=min_focal_length, max=max_focal_length))
            - log_focal_length_bias
        )

        # Concatenate to form pose_encoding
        pose_encoding = torch.cat([camera.T, quaternion_R, log_focal_length], dim=-1)

    elif pose_encoding_type == "absT_quaR_OneFL":
        # [absolute translation, quaternion rotation, normalized focal length]
        quaternion_R = matrix_to_quaternion(camera.R)
        focal_length = (torch.clamp(camera.focal_length, min=min_focal_length, max=max_focal_length))[..., 0:1]
        pose_encoding = torch.cat([camera.T, quaternion_R, focal_length], dim=-1)
    else:
        raise ValueError(f"Unknown pose encoding {pose_encoding_type}")

    return pose_encoding


class PoseEmbedding(nn.Module):
    def __init__(self, target_dim, n_harmonic_functions=10, append_input=True):
        super().__init__()

        self._emb_pose = HarmonicEmbedding(n_harmonic_functions=n_harmonic_functions, append_input=append_input)

        self.out_dim = self._emb_pose.get_output_dim(target_dim)

    def forward(self, pose_encoding):
        e_pose_encoding = self._emb_pose(pose_encoding)
        return e_pose_encoding


def get_2d_sincos_pos_embed(embed_dim: int, pos_encoding, return_grid=False) -> torch.Tensor:
    """
    This function initializes a grid and generates a 2D positional embedding using sine and cosine functions.
    It is a wrapper of get_2d_sincos_pos_embed_from_grid.
    Args:
    - embed_dim: The embedding dimension.
    - grid_size: The grid size.
    Returns:
    - pos_embed: The generated 2D positional embedding.
    """
    # if isinstance(grid_size, tuple):
    #     grid_size_h, grid_size_w = grid_size
    # else:
    #     grid_size_h = grid_size_w = grid_size
    # grid_h = torch.arange(grid_size_h, dtype=torch.float)
    # grid_w = torch.arange(grid_size_w, dtype=torch.float)
    # grid = torch.meshgrid(grid_w, grid_h, indexing="xy")
    grid = pos_encoding  # grid.reshape([..., 2])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    return pos_embed.reshape(pos_encoding.shape[0], pos_encoding.shape[1], -1)


def get_2d_sincos_pos_embed_from_grid(embed_dim: int, grid: torch.Tensor) -> torch.Tensor:
    """
    This function generates a 2D positional embedding from a given grid using sine and cosine functions.

    Args:
    - embed_dim: The embedding dimension.
    - grid: The grid to generate the embedding from.

    Returns:
    - emb: The generated 2D positional embedding.
    """
    assert embed_dim % 2 == 0

    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[..., 0].detach().cpu())  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[..., 1].detach().cpu())  # (H*W, D/2)

    emb = torch.cat([emb_h, emb_w], dim=2) # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos: torch.Tensor) -> torch.Tensor:
    """
    This function generates a 1D positional embedding from a given grid using sine and cosine functions.

    Args:
    - embed_dim: The embedding dimension.
    - pos: The position to generate the embedding from.

    Returns:
    - emb: The generated 1D positional embedding.
    """
    assert embed_dim % 2 == 0
    omega = torch.arange(embed_dim // 2, dtype=torch.double)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = torch.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = torch.sin(out)  # (M, D/2)
    emb_cos = torch.cos(out)  # (M, D/2)

    emb = torch.cat([emb_sin, emb_cos], dim=1)  # (M, D)
    return emb[None].float()


def get_2d_embedding(xy: torch.Tensor, C: int, cat_coords: bool = True) -> torch.Tensor:
    """
    This function generates a 2D positional embedding from given coordinates using sine and cosine functions.

    Args:
    - xy: The coordinates to generate the embedding from.
    - C: The size of the embedding.
    - cat_coords: A flag to indicate whether to concatenate the original coordinates to the embedding.

    Returns:
    - pe: The generated 2D positional embedding.
    """
    B, N, D = xy.shape
    assert D == 2

    x = xy[:, :, 0:1]
    y = xy[:, :, 1:2]
    div_term = (torch.arange(0, C, 2, device=xy.device, dtype=torch.float32) * (1000.0 / C)).reshape(1, 1, int(C / 2))

    pe_x = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32)
    pe_y = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32)

    pe_x[:, :, 0::2] = torch.sin(x * div_term)
    pe_x[:, :, 1::2] = torch.cos(x * div_term)

    pe_y[:, :, 0::2] = torch.sin(y * div_term)
    pe_y[:, :, 1::2] = torch.cos(y * div_term)

    pe = torch.cat([pe_x, pe_y], dim=2)  # (B, N, C*3)
    if cat_coords:
        pe = torch.cat([xy, pe], dim=2)  # (B, N, C*3+3)
    return pe


def bilinear_sampler(input, coords, align_corners=True, padding_mode="border"):
    r"""Sample a tensor using bilinear interpolation

    `bilinear_sampler(input, coords)` samples a tensor :attr:`input` at
    coordinates :attr:`coords` using bilinear interpolation. It is the same
    as `torch.nn.functional.grid_sample()` but with a different coordinate
    convention.

    The input tensor is assumed to be of shape :math:`(B, C, H, W)`, where
    :math:`B` is the batch size, :math:`C` is the number of channels,
    :math:`H` is the height of the image, and :math:`W` is the width of the
    image. The tensor :attr:`coords` of shape :math:`(B, H_o, W_o, 2)` is
    interpreted as an array of 2D point coordinates :math:`(x_i,y_i)`.

    Alternatively, the input tensor can be of size :math:`(B, C, T, H, W)`,
    in which case sample points are triplets :math:`(t_i,x_i,y_i)`. Note
    that in this case the order of the components is slightly different
    from `grid_sample()`, which would expect :math:`(x_i,y_i,t_i)`.

    If `align_corners` is `True`, the coordinate :math:`x` is assumed to be
    in the range :math:`[0,W-1]`, with 0 corresponding to the center of the
    left-most image pixel :math:`W-1` to the center of the right-most
    pixel.

    If `align_corners` is `False`, the coordinate :math:`x` is assumed to
    be in the range :math:`[0,W]`, with 0 corresponding to the left edge of
    the left-most pixel :math:`W` to the right edge of the right-most
    pixel.

    Similar conventions apply to the :math:`y` for the range
    :math:`[0,H-1]` and :math:`[0,H]` and to :math:`t` for the range
    :math:`[0,T-1]` and :math:`[0,T]`.

    Args:
        input (Tensor): batch of input images.
        coords (Tensor): batch of coordinates.
        align_corners (bool, optional): Coordinate convention. Defaults to `True`.
        padding_mode (str, optional): Padding mode. Defaults to `"border"`.

    Returns:
        Tensor: sampled points.
    """

    sizes = input.shape[2:]

    assert len(sizes) in [2, 3]

    if len(sizes) == 3:
        # t x y -> x y t to match dimensions T H W in grid_sample
        coords = coords[..., [1, 2, 0]]

    if align_corners:
        coords = coords * torch.tensor([2 / max(size - 1, 1) for size in reversed(sizes)], device=coords.device)
    else:
        coords = coords * torch.tensor([2 / size for size in reversed(sizes)], device=coords.device)

    coords -= 1

    return F.grid_sample(input, coords, align_corners=align_corners, padding_mode=padding_mode)


def sample_features4d(input, coords):
    r"""Sample spatial features

    `sample_features4d(input, coords)` samples the spatial features
    :attr:`input` represented by a 4D tensor :math:`(B, C, H, W)`.

    The field is sampled at coordinates :attr:`coords` using bilinear
    interpolation. :attr:`coords` is assumed to be of shape :math:`(B, R,
    3)`, where each sample has the format :math:`(x_i, y_i)`. This uses the
    same convention as :func:`bilinear_sampler` with `align_corners=True`.

    The output tensor has one feature per point, and has shape :math:`(B,
    R, C)`.

    Args:
        input (Tensor): spatial features.
        coords (Tensor): points.

    Returns:
        Tensor: sampled features.
    """

    B, _, _, _ = input.shape

    # B R 2 -> B R 1 2
    coords = coords.unsqueeze(2)

    # B C R 1
    feats = bilinear_sampler(input, coords)

    return feats.permute(0, 2, 1, 3).view(B, -1, feats.shape[1] * feats.shape[3])  # B C R 1 -> B R C