File size: 24,720 Bytes
91126af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.


import logging
from collections import defaultdict
from dataclasses import field, dataclass

import math
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from typing import Any, Dict, List, Optional, Tuple, Union, Callable
from functools import partial
from models.blocks import DecoderBlock
from .modules import AttnBlock, CrossAttnBlock, Mlp, ResidualBlock, Mlp_res
from .util_vgg import PoseEmbedding, pose_encoding_to_camera, camera_to_pose_encoding
from torch.utils.checkpoint import checkpoint
import torch.nn.functional as F
from pytorch3d.transforms.rotation_conversions import matrix_to_quaternion, quaternion_to_matrix
import pytorch3d.transforms 
logger = logging.getLogger(__name__)
_RESNET_MEAN = [0.485, 0.456, 0.406]
_RESNET_STD = [0.229, 0.224, 0.225]

def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
    """
    Convert a unit quaternion to a standard form: one in which the real
    part is non negative.

    Args:
        quaternions: Quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Standardized quaternions as tensor of shape (..., 4).
    """
    return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)

def rotation_distance(R1,R2,eps=1e-7):
    # http://www.boris-belousov.net/2016/12/01/quat-dist/
    R_diff = R1@R2.transpose(-2,-1)
    trace = R_diff[...,0,0]+R_diff[...,1,1]+R_diff[...,2,2]
    angle = ((trace-1)/2).clamp(-1+eps,1-eps).acos_() # numerical stability near -1/+1
    return angle

class SimpleVQAutoEncoder(nn.Module):
    def __init__(self, hidden_size):
        super().__init__()
        self.encoder = nn.ModuleList(
            [Mlp(7, hidden_size*2, hidden_size*2, drop=0)]+ [Mlp_res(hidden_size*2, hidden_size*2, hidden_size*2, drop=0) for _ in range(4)] + \
            [Mlp(hidden_size*2, hidden_size*2, 256, drop=0)]
        )
        self.decoder = nn.ModuleList(
            [Mlp(256, hidden_size*2, hidden_size*2, drop=0)] + [Mlp_res(hidden_size*2, hidden_size*2, hidden_size*2, drop=0) for _ in range(4)] + [Mlp(hidden_size*2, hidden_size*2, 7, drop=0)])
        
    def forward(self, xs):
        z_e = self.encode(xs)
        out = self.decode(z_e)
        return out

    def encode(self, x):
        for encoder in self.encoder:
            x = encoder(x)
        # z_e = x.permute(0, 2, 3, 1).contiguous()
        return x

    def decode(self, z_q):
        # z_q = z_q.permute(0, 3, 1, 2).contiguous()
        for decoder in self.decoder:
            z_q = decoder(z_q)
        # out = z_q
        # out_rot = out[..., 3:]
        # out = torch.cat([out[..., :3], out_rot], dim=-1)
        return z_q

    @torch.no_grad()
    def get_codes(self, xs):
        z_e = self.encode(xs)
        _, _, code = self.quantizer(z_e)
        return code

    @torch.no_grad()
    def get_soft_codes(self, xs, temp=1.0, stochastic=False):
        assert hasattr(self.quantizer, 'get_soft_codes')

        z_e = self.encode(xs)
        soft_code, code = self.quantizer.get_soft_codes(z_e, temp=temp, stochastic=stochastic)
        return soft_code, code

    @torch.no_grad()
    def decode_code(self, code):
        z_q = self.quantizer.embed_code(code)
        decoded = self.decode(z_q)
        return decoded

    def get_recon_imgs(self, xs_real, xs_recon):

        xs_real = xs_real * 0.5 + 0.5
        xs_recon = xs_recon * 0.5 + 0.5
        xs_recon = torch.clamp(xs_recon, 0, 1)

        return xs_real, xs_recon

    def compute_loss(self, out, xs=None, valid=False):

        # if self.loss_type == 'mse':
        loss_recon = F.mse_loss(out, xs, reduction='mean') 
        # elif self.loss_type == 'l1':
        #     loss_recon = F.l1_loss(out, xs, reduction='mean')
        # else:
        #     raise ValueError('incompatible loss type')
        if valid:
            loss_recon = loss_recon * xs.shape[0] * xs.shape[1]
        loss_total = loss_recon 
        return {
            'loss_total': loss_total,
            'loss_recon': loss_recon,
        }

    def get_last_layer(self):
        return self.decoder.conv_out.weight

    @torch.no_grad()
    def get_code_emb_with_depth(self, code):
        return self.quantizer.embed_code_with_depth(code)

    @torch.no_grad()
    def decode_partial_code(self, code, code_idx, decode_type='select'):
        r"""
        Use partial codebooks and decode the codebook features.
        If decode_type == 'select', the (code_idx)-th codebook features are decoded.
        If decode_type == 'add', the [0,1,...,code_idx]-th codebook features are added and decoded.
        """
        z_q = self.quantizer.embed_partial_code(code, code_idx, decode_type)
        decoded = self.decode(z_q)
        return decoded

    @torch.no_grad()
    def forward_partial_code(self, xs, code_idx, decode_type='select'):
        r"""
        Reconstuct an input using partial codebooks.
        """
        code = self.get_codes(xs)
        out = self.decode_partial_code(code, code_idx, decode_type)
        return out

class CameraPredictor(nn.Module):
    def __init__(
        self,
        hooks_idx,
        hidden_size=768,
        num_heads=8,
        mlp_ratio=4,
        z_dim: int = 768,
        z_dim_input: int = 768,
        down_size=336,
        att_depth=8,
        trunk_depth=4,
        pose_encoding_type="absT_quaR_logFL",
        cfg=None,
        rope=None
    ):
        super().__init__()
        self.cfg = cfg
        self.hooks_idx = hooks_idx

        self.att_depth = att_depth
        self.down_size = down_size
        self.pose_encoding_type = pose_encoding_type
        self.rope = rope
        if self.pose_encoding_type == "absT_quaR_OneFL":
            self.target_dim = 8
        if self.pose_encoding_type == "absT_quaR_logFL":
            self.target_dim = 9

        # self.backbone = self.get_backbone(backbone)

        # for param in self.backbone.parameters():
        #     param.requires_grad = False
        self.norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.norm_input = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)

        # sine and cosine embed for camera parameters
        self.embed_pose = PoseEmbedding(
            target_dim=self.target_dim, n_harmonic_functions=(hidden_size // self.target_dim) // 2, append_input=True
        )
        self.pose_proj = nn.Linear(756 + 9, hidden_size)
        self.pose_token = nn.Parameter(torch.zeros(1, 1, 1, hidden_size))  # register
        self.pose_token_ref = nn.Parameter(torch.zeros(1, 1, 1, hidden_size))  # register
        self.feat0_token = nn.Parameter(torch.zeros(1, 1, 1, hidden_size))  # register
        self.feat1_token = nn.Parameter(torch.zeros(1, 1, 1, hidden_size))  # register

        self.input_transform = Mlp(in_features=z_dim_input, hidden_features=hidden_size, out_features=hidden_size, drop=0)
        self.pose_branch = Mlp(
            in_features=hidden_size, hidden_features=hidden_size * 2, out_features=hidden_size + self.target_dim, drop=0
        )

        self.ffeat_updater = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.GELU())
        self.self_att = nn.ModuleList(
            [
                AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention)
                for _ in range(self.att_depth)
            ]
        )
        self.cross_att = nn.ModuleList(
            [CrossAttnBlock(hidden_size, hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(self.att_depth)]
        )
        
        self.dec_blocks = nn.ModuleList([
            DecoderBlock(hidden_size, 12, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_mem=True, rope=self.rope)
            for i in range(1)])
        
        self.trunk = nn.Sequential(
            *[
                AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention)
                for _ in range(trunk_depth)
            ]
        )

        self.gamma = 0.8

        nn.init.normal_(self.pose_token, std=1e-6)

        for name, value in (("_resnet_mean", _RESNET_MEAN), ("_resnet_std", _RESNET_STD)):
            self.register_buffer(name, torch.FloatTensor(value).view(1, 3, 1, 1), persistent=False)

    def forward(self, batch_size, iters=4, pos_encoding=None, interm_feature1=None, interm_feature2=None, enabled=True, dtype=torch.bfloat16):
        """
        reshaped_image: Bx3xHxW. The values of reshaped_image are within [0, 1]
        preliminary_cameras: PyTorch3D cameras.

        TODO: dropping the usage of PyTorch3D cameras.
        """
        # if rgb_feat_init is None:
        #     # Get the 2D image features
        rgb_feat_init1 = interm_feature1
        rgb_feat_init2 = interm_feature2
        rgb_feat_init1[0] =  self.norm_input(self.input_transform(rgb_feat_init1[0]))
        rgb_feat_init2[0] =  self.norm_input(self.input_transform(rgb_feat_init2[0]))
        rgb_feat, B, S, C = self.get_2D_image_features(batch_size, rgb_feat_init1, rgb_feat_init2, pos_encoding, dtype)
        B, S, C = rgb_feat.shape
        # if preliminary_cameras is not None:
        #     # Init the pred_pose_enc by preliminary_cameras
        #     pred_pose_enc = (
        #         camera_to_pose_encoding(preliminary_cameras, pose_encoding_type=self.pose_encoding_type)
        #         .reshape(B, S, -1)
        #         .to(rgb_feat.dtype)
        #     )
        # else:
        # Or you can use random init for the poses
        pred_pose_enc = torch.zeros(B, S, self.target_dim).to(rgb_feat.device)
        rgb_feat_init = rgb_feat.clone()
        pred_cameras_list = []
        for iter_num in range(iters):
            pred_pose_enc = pred_pose_enc.detach()
            # Embed the camera parameters and add to rgb_feat
            pose_embed = self.embed_pose(pred_pose_enc)
            pose_embed = self.pose_proj(pose_embed)
            rgb_feat = rgb_feat + pose_embed
            rgb_feat[:,:1] = self.pose_token_ref[:, 0] + rgb_feat[:,:1]
            # Run trunk transformers on rgb_feat
            rgb_feat = self.trunk(rgb_feat)
            # Predict the delta feat and pose encoding at each iteration
            delta = self.pose_branch(rgb_feat)
            delta_pred_pose_enc = delta[..., : self.target_dim]
            delta_feat = delta[..., self.target_dim :]
            rgb_feat = self.ffeat_updater(self.norm(delta_feat)) + rgb_feat
            pred_pose_enc = pred_pose_enc + delta_pred_pose_enc
            # Residual connection
            rgb_feat = (rgb_feat + rgb_feat_init) / 2
            # Pose encoding to Cameras
            with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32): 
                pred_cameras = pose_encoding_to_camera(pred_pose_enc, pose_encoding_type='train')
                pred_cameras_list = pred_cameras_list + [pred_cameras]
        # pose_predictions = {
        #     "pred_pose_enc": pred_pose_enc,
        #     "pred_cameras": pred_cameras,
        #     "rgb_feat_init": rgb_feat_init,
        # }

        return pred_cameras_list, rgb_feat

    def get_backbone(self, backbone):
        """
        Load the backbone model.
        """
        if backbone == "dinov2s":
            return torch.hub.load("facebookresearch/dinov2", "dinov2_vits14_reg")
        elif backbone == "dinov2b":
            return torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14_reg")
        else:
            raise NotImplementedError(f"Backbone '{backbone}' not implemented")

    def _resnet_normalize_image(self, img: torch.Tensor) -> torch.Tensor:
        return (img - self._resnet_mean) / self._resnet_std

    def get_2D_image_features(self, batch_size, rgb_feat_init1, rgb_feat_init2, pos_encoding, dtype):
        # Get the 2D image features
        # if reshaped_image.shape[-1] != self.down_size:
        #     reshaped_image = F.interpolate(
        #         reshaped_image, (self.down_size, self.down_size), mode="bilinear", align_corners=True
        #     )
        rgb_feat0 = torch.cat([rgb_feat_init1[0], rgb_feat_init2[0]], dim=0).to(dtype) + self.feat0_token[0].to(dtype)
        rgb_feat1 = torch.cat([rgb_feat_init1[1], rgb_feat_init2[1]], dim=0).to(dtype) + self.feat1_token[0].to(dtype)
        rgb_feat0 = rgb_feat0.reshape(-1,*rgb_feat0.shape[1:])
        rgb_feat1 = rgb_feat1.reshape(-1,*rgb_feat1.shape[1:])
        rgb_feat1, _ = self.dec_blocks[0](rgb_feat1, rgb_feat0, pos_encoding, pos_encoding)
        rgb_feat = rgb_feat1.reshape(batch_size, -1, *rgb_feat1.shape[1:])
        # B, N, P, C = rgb_feat.shape
        # add embedding of 2D spaces
        # pos_embed = get_2d_sincos_pos_embed(C, pos_encoding).reshape(B, S, P, C)
        x = rgb_feat.reshape(-1, *rgb_feat1.shape[-2:])
        B, N, C = x.shape
        x = x.reshape(B, N, -1, 64)
        x = x.permute(0, 2, 1, 3)
        x = x + self.rope(torch.ones_like(x).to(x), pos_encoding).to(dtype)
        x = x.permute(0, 2, 1, 3)
        x = x.reshape(B, N, -1)
        rgb_feat = x.reshape(batch_size, -1, N, C)
        # register for pose
        B, S, P, C = rgb_feat.shape
        pose_token = self.pose_token.expand(B, S-1, -1, -1)
        pose_token = torch.cat((self.pose_token_ref.expand(B, 1, -1, -1), pose_token), dim=1).to(dtype)
        rgb_feat = torch.cat([pose_token, rgb_feat], dim=-2)
        B, S, P, C = rgb_feat.shape
        for idx in range(self.att_depth):
            # self attention
            rgb_feat = rearrange(rgb_feat, "b s p c -> (b s) p c", b=B, s=S)
            rgb_feat = self.self_att[idx](rgb_feat)
            rgb_feat = rearrange(rgb_feat, "(b s) p c -> b s p c", b=B, s=S)
            feat_0 = rgb_feat[:, 0]
            feat_others = rgb_feat[:, 1:]
            # cross attention
            feat_others = rearrange(feat_others, "b m p c -> b (m p) c", m=S - 1, p=P)
            feat_others = self.cross_att[idx](feat_others, feat_0)
            feat_others = rearrange(feat_others, "b (m p) c -> b m p c", m=S - 1, p=P)
            rgb_feat = torch.cat([rgb_feat[:, 0:1], feat_others], dim=1)

        rgb_feat = rgb_feat[:, :, 0]
        return rgb_feat, B, S, C
    

class CameraPredictor_light(nn.Module):
    def __init__(
        self,
        hood_idx,
        hidden_size=768,
        num_heads=8,
        mlp_ratio=4,
        down_size=336,
        att_depth=8,
        trunk_depth=4,
        pose_encoding_type="absT_quaR_logFL",
        cfg=None,
        rope=None
    ):
        super().__init__()
        self.cfg = cfg
        self.hood_idx = hood_idx
        self.att_depth = att_depth
        self.down_size = down_size
        self.pose_encoding_type = pose_encoding_type
        self.rope = rope
        if self.pose_encoding_type == "absT_quaR_OneFL":
            self.target_dim = 8
        if self.pose_encoding_type == "absT_quaR_logFL":
            self.target_dim = 9

        # self.backbone = self.get_backbone(backbone)

        # for param in self.backbone.parameters():
        #     param.requires_grad = False
        self.norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        # sine and cosine embed for camera parameters
        self.embed_pose = PoseEmbedding(
            target_dim=self.target_dim, n_harmonic_functions=(hidden_size // self.target_dim) // 2, append_input=True
        )
        self.pose_proj = nn.Linear(756 + 9, hidden_size)
        self.time_proj = nn.Linear(1, hidden_size)

        self.pose_token_ref = nn.Parameter(torch.zeros(1, 1, 1, hidden_size))  # register

        self.pose_branch = Mlp(
            in_features=hidden_size, hidden_features=hidden_size * 2, out_features=hidden_size + self.target_dim, drop=0
        )

        self.ffeat_updater = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.GELU())

        
        self.trunk = nn.Sequential(
            *[
                AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention)
                for _ in range(trunk_depth)
            ]
        )
        self.gamma = 0.8
        self.cam_token_encoder = nn.ModuleList([AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention)
                for _ in range(2)])
        
        nn.init.normal_(self.pose_token_ref, std=1e-6)
        self.hidden_size = hidden_size
        for name, value in (("_resnet_mean", _RESNET_MEAN), ("_resnet_std", _RESNET_STD)):
            self.register_buffer(name, torch.FloatTensor(value).view(1, 3, 1, 1), persistent=False)

    def forward(self, batch_size, iters=4, interm_feature1=None, interm_feature2=None, enabled=True, dtype=torch.bfloat16):
        """
        reshaped_image: Bx3xHxW. The values of reshaped_image are within [0, 1]
        preliminary_cameras: PyTorch3D cameras.

        TODO: dropping the usage of PyTorch3D cameras.
        """
        # if rgb_feat_init is None:
        #     # Get the 2D image features
        import ipdb; ipdb.set_trace()
        rgb_feat_init1 = [interm_feature1[i-1].reshape(batch_size, 1, self.hidden_size) for i in self.hood_idx[1:]]
        rgb_feat_init2 = [interm_feature2[i-1].reshape(batch_size, 1, self.hidden_size) for i in self.hood_idx[1:]]
        rgb_feat_init1 = torch.cat(rgb_feat_init1, dim=1)
        rgb_feat_init2 = torch.cat(rgb_feat_init2, dim=1)
        rgb_feat = torch.cat([rgb_feat_init1, rgb_feat_init2], dim=0).to(dtype)
        for cam_token_encoder in self.cam_token_encoder:
            rgb_feat = rgb_feat + cam_token_encoder(rgb_feat)
            
        rgb_feat = rgb_feat[:, 2:]
        rgb_feat = rgb_feat.reshape(batch_size, -1, rgb_feat.shape[-1])
        B, S, C = rgb_feat.shape
        pred_pose_enc = torch.zeros(B, S, self.target_dim).to(rgb_feat)
        rgb_feat_init = rgb_feat.clone()
        pred_cameras_list = []
        for iter_num in range(iters):
            pred_pose_enc = pred_pose_enc.detach()
            # Embed the camera parameters and add to rgb_feat
            pose_embed_time = self.time_proj(torch.tensor([iter_num]).to(rgb_feat))[None, None]
            pose_embed = self.embed_pose(pred_pose_enc)
            pose_embed = self.pose_proj(pose_embed)
            rgb_feat = rgb_feat + pose_embed + pose_embed_time
            rgb_feat[:,:1] = self.pose_token_ref[:, 0] + rgb_feat[:,:1]
            # Run trunk transformers on rgb_feat
            rgb_feat = self.trunk(rgb_feat)
            # Predict the delta feat and pose encoding at each iteration
            delta = self.pose_branch(rgb_feat)
            delta_pred_pose_enc = delta[..., : self.target_dim]
            delta_feat = delta[..., self.target_dim :]
            rgb_feat = self.ffeat_updater(self.norm(delta_feat)) + rgb_feat
            pred_pose_enc = pred_pose_enc + delta_pred_pose_enc
            # Residual connection
            rgb_feat = (rgb_feat + rgb_feat_init) / 2
            # Pose encoding to Cameras
            with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32): 
                pred_cameras = pose_encoding_to_camera(pred_pose_enc.float(), pose_encoding_type='train')
                pred_cameras_list = pred_cameras_list + [pred_cameras]
        return pred_cameras_list, rgb_feat

    def get_backbone(self, backbone):
        """
        Load the backbone model.
        """
        if backbone == "dinov2s":
            return torch.hub.load("facebookresearch/dinov2", "dinov2_vits14_reg")
        elif backbone == "dinov2b":
            return torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14_reg")
        else:
            raise NotImplementedError(f"Backbone '{backbone}' not implemented")

    def _resnet_normalize_image(self, img: torch.Tensor) -> torch.Tensor:
        return (img - self._resnet_mean) / self._resnet_std

    

class CameraPredictor_clean(nn.Module):
    def __init__(
        self,
        hood_idx,
        hidden_size=768,
        num_heads=8,
        mlp_ratio=4,
        down_size=336,
        att_depth=8,
        trunk_depth=4,
        pose_encoding_type="absT_quaR_logFL",
        cfg=None,
        rope=None
    ):
        super().__init__()
        self.cfg = cfg
        self.hood_idx = hood_idx
        self.att_depth = att_depth
        self.down_size = down_size
        self.pose_encoding_type = pose_encoding_type
        self.rope = rope
        if self.pose_encoding_type == "absT_quaR_OneFL":
            self.target_dim = 8
        if self.pose_encoding_type == "absT_quaR_logFL":
            self.target_dim = 9
        self.norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        # sine and cosine embed for camera parameters
        self.embed_pose = PoseEmbedding(
            target_dim=self.target_dim, n_harmonic_functions=(hidden_size // self.target_dim) // 2, append_input=True
        )
        self.pose_proj = nn.Linear(756 + 9, hidden_size)
        self.pose_token_ref = nn.Parameter(torch.zeros(1, 1, 1, hidden_size))  # register
        self.pose_branch = Mlp(
            in_features=hidden_size, hidden_features=hidden_size * 2, out_features=hidden_size + self.target_dim, drop=0
        )
        self.ffeat_updater = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.GELU())
        self.trunk = nn.Sequential(
            *[
                AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention)
                for _ in range(trunk_depth)
            ]
        )
        self.gamma = 0.8
        nn.init.normal_(self.pose_token_ref, std=1e-6)
        for name, value in (("_resnet_mean", _RESNET_MEAN), ("_resnet_std", _RESNET_STD)):
            self.register_buffer(name, torch.FloatTensor(value).view(1, 3, 1, 1), persistent=False)

    def forward(self, batch_size, iters=4, interm_feature1=None, interm_feature2=None, enabled=True, dtype=torch.bfloat16):
        """
        reshaped_image: Bx3xHxW. The values of reshaped_image are within [0, 1]
        preliminary_cameras: PyTorch3D cameras.

        TODO: dropping the usage of PyTorch3D cameras.
        """
        # if rgb_feat_init is None:
        #     # Get the 2D image features
        rgb_feat_init1 = interm_feature1[-1].reshape(batch_size, -1, interm_feature1[-1].shape[-1])
        rgb_feat_init2 = interm_feature2[-1].reshape(batch_size, -1, interm_feature2[-1].shape[-1])
        rgb_feat = torch.cat([rgb_feat_init1, rgb_feat_init2], dim=1).to(dtype)
        B, S, C = rgb_feat.shape
        pred_pose_enc = torch.zeros(B, S, self.target_dim).to(rgb_feat)
        rgb_feat_init = rgb_feat.clone()
        pred_cameras_list = []
        for iter_num in range(iters):
            pred_pose_enc = pred_pose_enc.detach()
            # Embed the camera parameters and add to rgb_feat
            pose_embed = self.embed_pose(pred_pose_enc)
            pose_embed = self.pose_proj(pose_embed)
            rgb_feat = rgb_feat + pose_embed
            rgb_feat[:,:1] = self.pose_token_ref[:, 0] + rgb_feat[:,:1]
            # Run trunk transformers on rgb_feat
            # rgb_feat = self.trunk(rgb_feat)
            rgb_feat = checkpoint(self.trunk, rgb_feat)
            # Predict the delta feat and pose encoding at each iteration
            delta = self.pose_branch(rgb_feat)
            delta_pred_pose_enc = delta[..., : self.target_dim]
            delta_feat = delta[..., self.target_dim :]
            rgb_feat = self.ffeat_updater(self.norm(delta_feat)) + rgb_feat
            pred_pose_enc = pred_pose_enc + delta_pred_pose_enc
            # Residual connection
            rgb_feat = (rgb_feat + rgb_feat_init) / 2
            # Pose encoding to Cameras
            with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32): 
                pred_cameras = pose_encoding_to_camera(pred_pose_enc.float(), pose_encoding_type='train')
                pred_cameras_list = pred_cameras_list + [pred_cameras]
        return pred_cameras_list, rgb_feat

    def get_backbone(self, backbone):
        """
        Load the backbone model.
        """
        if backbone == "dinov2s":
            return torch.hub.load("facebookresearch/dinov2", "dinov2_vits14_reg")
        elif backbone == "dinov2b":
            return torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14_reg")
        else:
            raise NotImplementedError(f"Backbone '{backbone}' not implemented")

    def _resnet_normalize_image(self, img: torch.Tensor) -> torch.Tensor:
        return (img - self._resnet_mean) / self._resnet_std