File size: 24,720 Bytes
91126af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import logging
from collections import defaultdict
from dataclasses import field, dataclass
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from typing import Any, Dict, List, Optional, Tuple, Union, Callable
from functools import partial
from models.blocks import DecoderBlock
from .modules import AttnBlock, CrossAttnBlock, Mlp, ResidualBlock, Mlp_res
from .util_vgg import PoseEmbedding, pose_encoding_to_camera, camera_to_pose_encoding
from torch.utils.checkpoint import checkpoint
import torch.nn.functional as F
from pytorch3d.transforms.rotation_conversions import matrix_to_quaternion, quaternion_to_matrix
import pytorch3d.transforms
logger = logging.getLogger(__name__)
_RESNET_MEAN = [0.485, 0.456, 0.406]
_RESNET_STD = [0.229, 0.224, 0.225]
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert a unit quaternion to a standard form: one in which the real
part is non negative.
Args:
quaternions: Quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Standardized quaternions as tensor of shape (..., 4).
"""
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
def rotation_distance(R1,R2,eps=1e-7):
# http://www.boris-belousov.net/2016/12/01/quat-dist/
R_diff = R1@R2.transpose(-2,-1)
trace = R_diff[...,0,0]+R_diff[...,1,1]+R_diff[...,2,2]
angle = ((trace-1)/2).clamp(-1+eps,1-eps).acos_() # numerical stability near -1/+1
return angle
class SimpleVQAutoEncoder(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.encoder = nn.ModuleList(
[Mlp(7, hidden_size*2, hidden_size*2, drop=0)]+ [Mlp_res(hidden_size*2, hidden_size*2, hidden_size*2, drop=0) for _ in range(4)] + \
[Mlp(hidden_size*2, hidden_size*2, 256, drop=0)]
)
self.decoder = nn.ModuleList(
[Mlp(256, hidden_size*2, hidden_size*2, drop=0)] + [Mlp_res(hidden_size*2, hidden_size*2, hidden_size*2, drop=0) for _ in range(4)] + [Mlp(hidden_size*2, hidden_size*2, 7, drop=0)])
def forward(self, xs):
z_e = self.encode(xs)
out = self.decode(z_e)
return out
def encode(self, x):
for encoder in self.encoder:
x = encoder(x)
# z_e = x.permute(0, 2, 3, 1).contiguous()
return x
def decode(self, z_q):
# z_q = z_q.permute(0, 3, 1, 2).contiguous()
for decoder in self.decoder:
z_q = decoder(z_q)
# out = z_q
# out_rot = out[..., 3:]
# out = torch.cat([out[..., :3], out_rot], dim=-1)
return z_q
@torch.no_grad()
def get_codes(self, xs):
z_e = self.encode(xs)
_, _, code = self.quantizer(z_e)
return code
@torch.no_grad()
def get_soft_codes(self, xs, temp=1.0, stochastic=False):
assert hasattr(self.quantizer, 'get_soft_codes')
z_e = self.encode(xs)
soft_code, code = self.quantizer.get_soft_codes(z_e, temp=temp, stochastic=stochastic)
return soft_code, code
@torch.no_grad()
def decode_code(self, code):
z_q = self.quantizer.embed_code(code)
decoded = self.decode(z_q)
return decoded
def get_recon_imgs(self, xs_real, xs_recon):
xs_real = xs_real * 0.5 + 0.5
xs_recon = xs_recon * 0.5 + 0.5
xs_recon = torch.clamp(xs_recon, 0, 1)
return xs_real, xs_recon
def compute_loss(self, out, xs=None, valid=False):
# if self.loss_type == 'mse':
loss_recon = F.mse_loss(out, xs, reduction='mean')
# elif self.loss_type == 'l1':
# loss_recon = F.l1_loss(out, xs, reduction='mean')
# else:
# raise ValueError('incompatible loss type')
if valid:
loss_recon = loss_recon * xs.shape[0] * xs.shape[1]
loss_total = loss_recon
return {
'loss_total': loss_total,
'loss_recon': loss_recon,
}
def get_last_layer(self):
return self.decoder.conv_out.weight
@torch.no_grad()
def get_code_emb_with_depth(self, code):
return self.quantizer.embed_code_with_depth(code)
@torch.no_grad()
def decode_partial_code(self, code, code_idx, decode_type='select'):
r"""
Use partial codebooks and decode the codebook features.
If decode_type == 'select', the (code_idx)-th codebook features are decoded.
If decode_type == 'add', the [0,1,...,code_idx]-th codebook features are added and decoded.
"""
z_q = self.quantizer.embed_partial_code(code, code_idx, decode_type)
decoded = self.decode(z_q)
return decoded
@torch.no_grad()
def forward_partial_code(self, xs, code_idx, decode_type='select'):
r"""
Reconstuct an input using partial codebooks.
"""
code = self.get_codes(xs)
out = self.decode_partial_code(code, code_idx, decode_type)
return out
class CameraPredictor(nn.Module):
def __init__(
self,
hooks_idx,
hidden_size=768,
num_heads=8,
mlp_ratio=4,
z_dim: int = 768,
z_dim_input: int = 768,
down_size=336,
att_depth=8,
trunk_depth=4,
pose_encoding_type="absT_quaR_logFL",
cfg=None,
rope=None
):
super().__init__()
self.cfg = cfg
self.hooks_idx = hooks_idx
self.att_depth = att_depth
self.down_size = down_size
self.pose_encoding_type = pose_encoding_type
self.rope = rope
if self.pose_encoding_type == "absT_quaR_OneFL":
self.target_dim = 8
if self.pose_encoding_type == "absT_quaR_logFL":
self.target_dim = 9
# self.backbone = self.get_backbone(backbone)
# for param in self.backbone.parameters():
# param.requires_grad = False
self.norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.norm_input = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
# sine and cosine embed for camera parameters
self.embed_pose = PoseEmbedding(
target_dim=self.target_dim, n_harmonic_functions=(hidden_size // self.target_dim) // 2, append_input=True
)
self.pose_proj = nn.Linear(756 + 9, hidden_size)
self.pose_token = nn.Parameter(torch.zeros(1, 1, 1, hidden_size)) # register
self.pose_token_ref = nn.Parameter(torch.zeros(1, 1, 1, hidden_size)) # register
self.feat0_token = nn.Parameter(torch.zeros(1, 1, 1, hidden_size)) # register
self.feat1_token = nn.Parameter(torch.zeros(1, 1, 1, hidden_size)) # register
self.input_transform = Mlp(in_features=z_dim_input, hidden_features=hidden_size, out_features=hidden_size, drop=0)
self.pose_branch = Mlp(
in_features=hidden_size, hidden_features=hidden_size * 2, out_features=hidden_size + self.target_dim, drop=0
)
self.ffeat_updater = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.GELU())
self.self_att = nn.ModuleList(
[
AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention)
for _ in range(self.att_depth)
]
)
self.cross_att = nn.ModuleList(
[CrossAttnBlock(hidden_size, hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(self.att_depth)]
)
self.dec_blocks = nn.ModuleList([
DecoderBlock(hidden_size, 12, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_mem=True, rope=self.rope)
for i in range(1)])
self.trunk = nn.Sequential(
*[
AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention)
for _ in range(trunk_depth)
]
)
self.gamma = 0.8
nn.init.normal_(self.pose_token, std=1e-6)
for name, value in (("_resnet_mean", _RESNET_MEAN), ("_resnet_std", _RESNET_STD)):
self.register_buffer(name, torch.FloatTensor(value).view(1, 3, 1, 1), persistent=False)
def forward(self, batch_size, iters=4, pos_encoding=None, interm_feature1=None, interm_feature2=None, enabled=True, dtype=torch.bfloat16):
"""
reshaped_image: Bx3xHxW. The values of reshaped_image are within [0, 1]
preliminary_cameras: PyTorch3D cameras.
TODO: dropping the usage of PyTorch3D cameras.
"""
# if rgb_feat_init is None:
# # Get the 2D image features
rgb_feat_init1 = interm_feature1
rgb_feat_init2 = interm_feature2
rgb_feat_init1[0] = self.norm_input(self.input_transform(rgb_feat_init1[0]))
rgb_feat_init2[0] = self.norm_input(self.input_transform(rgb_feat_init2[0]))
rgb_feat, B, S, C = self.get_2D_image_features(batch_size, rgb_feat_init1, rgb_feat_init2, pos_encoding, dtype)
B, S, C = rgb_feat.shape
# if preliminary_cameras is not None:
# # Init the pred_pose_enc by preliminary_cameras
# pred_pose_enc = (
# camera_to_pose_encoding(preliminary_cameras, pose_encoding_type=self.pose_encoding_type)
# .reshape(B, S, -1)
# .to(rgb_feat.dtype)
# )
# else:
# Or you can use random init for the poses
pred_pose_enc = torch.zeros(B, S, self.target_dim).to(rgb_feat.device)
rgb_feat_init = rgb_feat.clone()
pred_cameras_list = []
for iter_num in range(iters):
pred_pose_enc = pred_pose_enc.detach()
# Embed the camera parameters and add to rgb_feat
pose_embed = self.embed_pose(pred_pose_enc)
pose_embed = self.pose_proj(pose_embed)
rgb_feat = rgb_feat + pose_embed
rgb_feat[:,:1] = self.pose_token_ref[:, 0] + rgb_feat[:,:1]
# Run trunk transformers on rgb_feat
rgb_feat = self.trunk(rgb_feat)
# Predict the delta feat and pose encoding at each iteration
delta = self.pose_branch(rgb_feat)
delta_pred_pose_enc = delta[..., : self.target_dim]
delta_feat = delta[..., self.target_dim :]
rgb_feat = self.ffeat_updater(self.norm(delta_feat)) + rgb_feat
pred_pose_enc = pred_pose_enc + delta_pred_pose_enc
# Residual connection
rgb_feat = (rgb_feat + rgb_feat_init) / 2
# Pose encoding to Cameras
with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
pred_cameras = pose_encoding_to_camera(pred_pose_enc, pose_encoding_type='train')
pred_cameras_list = pred_cameras_list + [pred_cameras]
# pose_predictions = {
# "pred_pose_enc": pred_pose_enc,
# "pred_cameras": pred_cameras,
# "rgb_feat_init": rgb_feat_init,
# }
return pred_cameras_list, rgb_feat
def get_backbone(self, backbone):
"""
Load the backbone model.
"""
if backbone == "dinov2s":
return torch.hub.load("facebookresearch/dinov2", "dinov2_vits14_reg")
elif backbone == "dinov2b":
return torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14_reg")
else:
raise NotImplementedError(f"Backbone '{backbone}' not implemented")
def _resnet_normalize_image(self, img: torch.Tensor) -> torch.Tensor:
return (img - self._resnet_mean) / self._resnet_std
def get_2D_image_features(self, batch_size, rgb_feat_init1, rgb_feat_init2, pos_encoding, dtype):
# Get the 2D image features
# if reshaped_image.shape[-1] != self.down_size:
# reshaped_image = F.interpolate(
# reshaped_image, (self.down_size, self.down_size), mode="bilinear", align_corners=True
# )
rgb_feat0 = torch.cat([rgb_feat_init1[0], rgb_feat_init2[0]], dim=0).to(dtype) + self.feat0_token[0].to(dtype)
rgb_feat1 = torch.cat([rgb_feat_init1[1], rgb_feat_init2[1]], dim=0).to(dtype) + self.feat1_token[0].to(dtype)
rgb_feat0 = rgb_feat0.reshape(-1,*rgb_feat0.shape[1:])
rgb_feat1 = rgb_feat1.reshape(-1,*rgb_feat1.shape[1:])
rgb_feat1, _ = self.dec_blocks[0](rgb_feat1, rgb_feat0, pos_encoding, pos_encoding)
rgb_feat = rgb_feat1.reshape(batch_size, -1, *rgb_feat1.shape[1:])
# B, N, P, C = rgb_feat.shape
# add embedding of 2D spaces
# pos_embed = get_2d_sincos_pos_embed(C, pos_encoding).reshape(B, S, P, C)
x = rgb_feat.reshape(-1, *rgb_feat1.shape[-2:])
B, N, C = x.shape
x = x.reshape(B, N, -1, 64)
x = x.permute(0, 2, 1, 3)
x = x + self.rope(torch.ones_like(x).to(x), pos_encoding).to(dtype)
x = x.permute(0, 2, 1, 3)
x = x.reshape(B, N, -1)
rgb_feat = x.reshape(batch_size, -1, N, C)
# register for pose
B, S, P, C = rgb_feat.shape
pose_token = self.pose_token.expand(B, S-1, -1, -1)
pose_token = torch.cat((self.pose_token_ref.expand(B, 1, -1, -1), pose_token), dim=1).to(dtype)
rgb_feat = torch.cat([pose_token, rgb_feat], dim=-2)
B, S, P, C = rgb_feat.shape
for idx in range(self.att_depth):
# self attention
rgb_feat = rearrange(rgb_feat, "b s p c -> (b s) p c", b=B, s=S)
rgb_feat = self.self_att[idx](rgb_feat)
rgb_feat = rearrange(rgb_feat, "(b s) p c -> b s p c", b=B, s=S)
feat_0 = rgb_feat[:, 0]
feat_others = rgb_feat[:, 1:]
# cross attention
feat_others = rearrange(feat_others, "b m p c -> b (m p) c", m=S - 1, p=P)
feat_others = self.cross_att[idx](feat_others, feat_0)
feat_others = rearrange(feat_others, "b (m p) c -> b m p c", m=S - 1, p=P)
rgb_feat = torch.cat([rgb_feat[:, 0:1], feat_others], dim=1)
rgb_feat = rgb_feat[:, :, 0]
return rgb_feat, B, S, C
class CameraPredictor_light(nn.Module):
def __init__(
self,
hood_idx,
hidden_size=768,
num_heads=8,
mlp_ratio=4,
down_size=336,
att_depth=8,
trunk_depth=4,
pose_encoding_type="absT_quaR_logFL",
cfg=None,
rope=None
):
super().__init__()
self.cfg = cfg
self.hood_idx = hood_idx
self.att_depth = att_depth
self.down_size = down_size
self.pose_encoding_type = pose_encoding_type
self.rope = rope
if self.pose_encoding_type == "absT_quaR_OneFL":
self.target_dim = 8
if self.pose_encoding_type == "absT_quaR_logFL":
self.target_dim = 9
# self.backbone = self.get_backbone(backbone)
# for param in self.backbone.parameters():
# param.requires_grad = False
self.norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
# sine and cosine embed for camera parameters
self.embed_pose = PoseEmbedding(
target_dim=self.target_dim, n_harmonic_functions=(hidden_size // self.target_dim) // 2, append_input=True
)
self.pose_proj = nn.Linear(756 + 9, hidden_size)
self.time_proj = nn.Linear(1, hidden_size)
self.pose_token_ref = nn.Parameter(torch.zeros(1, 1, 1, hidden_size)) # register
self.pose_branch = Mlp(
in_features=hidden_size, hidden_features=hidden_size * 2, out_features=hidden_size + self.target_dim, drop=0
)
self.ffeat_updater = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.GELU())
self.trunk = nn.Sequential(
*[
AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention)
for _ in range(trunk_depth)
]
)
self.gamma = 0.8
self.cam_token_encoder = nn.ModuleList([AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention)
for _ in range(2)])
nn.init.normal_(self.pose_token_ref, std=1e-6)
self.hidden_size = hidden_size
for name, value in (("_resnet_mean", _RESNET_MEAN), ("_resnet_std", _RESNET_STD)):
self.register_buffer(name, torch.FloatTensor(value).view(1, 3, 1, 1), persistent=False)
def forward(self, batch_size, iters=4, interm_feature1=None, interm_feature2=None, enabled=True, dtype=torch.bfloat16):
"""
reshaped_image: Bx3xHxW. The values of reshaped_image are within [0, 1]
preliminary_cameras: PyTorch3D cameras.
TODO: dropping the usage of PyTorch3D cameras.
"""
# if rgb_feat_init is None:
# # Get the 2D image features
import ipdb; ipdb.set_trace()
rgb_feat_init1 = [interm_feature1[i-1].reshape(batch_size, 1, self.hidden_size) for i in self.hood_idx[1:]]
rgb_feat_init2 = [interm_feature2[i-1].reshape(batch_size, 1, self.hidden_size) for i in self.hood_idx[1:]]
rgb_feat_init1 = torch.cat(rgb_feat_init1, dim=1)
rgb_feat_init2 = torch.cat(rgb_feat_init2, dim=1)
rgb_feat = torch.cat([rgb_feat_init1, rgb_feat_init2], dim=0).to(dtype)
for cam_token_encoder in self.cam_token_encoder:
rgb_feat = rgb_feat + cam_token_encoder(rgb_feat)
rgb_feat = rgb_feat[:, 2:]
rgb_feat = rgb_feat.reshape(batch_size, -1, rgb_feat.shape[-1])
B, S, C = rgb_feat.shape
pred_pose_enc = torch.zeros(B, S, self.target_dim).to(rgb_feat)
rgb_feat_init = rgb_feat.clone()
pred_cameras_list = []
for iter_num in range(iters):
pred_pose_enc = pred_pose_enc.detach()
# Embed the camera parameters and add to rgb_feat
pose_embed_time = self.time_proj(torch.tensor([iter_num]).to(rgb_feat))[None, None]
pose_embed = self.embed_pose(pred_pose_enc)
pose_embed = self.pose_proj(pose_embed)
rgb_feat = rgb_feat + pose_embed + pose_embed_time
rgb_feat[:,:1] = self.pose_token_ref[:, 0] + rgb_feat[:,:1]
# Run trunk transformers on rgb_feat
rgb_feat = self.trunk(rgb_feat)
# Predict the delta feat and pose encoding at each iteration
delta = self.pose_branch(rgb_feat)
delta_pred_pose_enc = delta[..., : self.target_dim]
delta_feat = delta[..., self.target_dim :]
rgb_feat = self.ffeat_updater(self.norm(delta_feat)) + rgb_feat
pred_pose_enc = pred_pose_enc + delta_pred_pose_enc
# Residual connection
rgb_feat = (rgb_feat + rgb_feat_init) / 2
# Pose encoding to Cameras
with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
pred_cameras = pose_encoding_to_camera(pred_pose_enc.float(), pose_encoding_type='train')
pred_cameras_list = pred_cameras_list + [pred_cameras]
return pred_cameras_list, rgb_feat
def get_backbone(self, backbone):
"""
Load the backbone model.
"""
if backbone == "dinov2s":
return torch.hub.load("facebookresearch/dinov2", "dinov2_vits14_reg")
elif backbone == "dinov2b":
return torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14_reg")
else:
raise NotImplementedError(f"Backbone '{backbone}' not implemented")
def _resnet_normalize_image(self, img: torch.Tensor) -> torch.Tensor:
return (img - self._resnet_mean) / self._resnet_std
class CameraPredictor_clean(nn.Module):
def __init__(
self,
hood_idx,
hidden_size=768,
num_heads=8,
mlp_ratio=4,
down_size=336,
att_depth=8,
trunk_depth=4,
pose_encoding_type="absT_quaR_logFL",
cfg=None,
rope=None
):
super().__init__()
self.cfg = cfg
self.hood_idx = hood_idx
self.att_depth = att_depth
self.down_size = down_size
self.pose_encoding_type = pose_encoding_type
self.rope = rope
if self.pose_encoding_type == "absT_quaR_OneFL":
self.target_dim = 8
if self.pose_encoding_type == "absT_quaR_logFL":
self.target_dim = 9
self.norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
# sine and cosine embed for camera parameters
self.embed_pose = PoseEmbedding(
target_dim=self.target_dim, n_harmonic_functions=(hidden_size // self.target_dim) // 2, append_input=True
)
self.pose_proj = nn.Linear(756 + 9, hidden_size)
self.pose_token_ref = nn.Parameter(torch.zeros(1, 1, 1, hidden_size)) # register
self.pose_branch = Mlp(
in_features=hidden_size, hidden_features=hidden_size * 2, out_features=hidden_size + self.target_dim, drop=0
)
self.ffeat_updater = nn.Sequential(nn.Linear(hidden_size, hidden_size), nn.GELU())
self.trunk = nn.Sequential(
*[
AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attn_class=nn.MultiheadAttention)
for _ in range(trunk_depth)
]
)
self.gamma = 0.8
nn.init.normal_(self.pose_token_ref, std=1e-6)
for name, value in (("_resnet_mean", _RESNET_MEAN), ("_resnet_std", _RESNET_STD)):
self.register_buffer(name, torch.FloatTensor(value).view(1, 3, 1, 1), persistent=False)
def forward(self, batch_size, iters=4, interm_feature1=None, interm_feature2=None, enabled=True, dtype=torch.bfloat16):
"""
reshaped_image: Bx3xHxW. The values of reshaped_image are within [0, 1]
preliminary_cameras: PyTorch3D cameras.
TODO: dropping the usage of PyTorch3D cameras.
"""
# if rgb_feat_init is None:
# # Get the 2D image features
rgb_feat_init1 = interm_feature1[-1].reshape(batch_size, -1, interm_feature1[-1].shape[-1])
rgb_feat_init2 = interm_feature2[-1].reshape(batch_size, -1, interm_feature2[-1].shape[-1])
rgb_feat = torch.cat([rgb_feat_init1, rgb_feat_init2], dim=1).to(dtype)
B, S, C = rgb_feat.shape
pred_pose_enc = torch.zeros(B, S, self.target_dim).to(rgb_feat)
rgb_feat_init = rgb_feat.clone()
pred_cameras_list = []
for iter_num in range(iters):
pred_pose_enc = pred_pose_enc.detach()
# Embed the camera parameters and add to rgb_feat
pose_embed = self.embed_pose(pred_pose_enc)
pose_embed = self.pose_proj(pose_embed)
rgb_feat = rgb_feat + pose_embed
rgb_feat[:,:1] = self.pose_token_ref[:, 0] + rgb_feat[:,:1]
# Run trunk transformers on rgb_feat
# rgb_feat = self.trunk(rgb_feat)
rgb_feat = checkpoint(self.trunk, rgb_feat)
# Predict the delta feat and pose encoding at each iteration
delta = self.pose_branch(rgb_feat)
delta_pred_pose_enc = delta[..., : self.target_dim]
delta_feat = delta[..., self.target_dim :]
rgb_feat = self.ffeat_updater(self.norm(delta_feat)) + rgb_feat
pred_pose_enc = pred_pose_enc + delta_pred_pose_enc
# Residual connection
rgb_feat = (rgb_feat + rgb_feat_init) / 2
# Pose encoding to Cameras
with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
pred_cameras = pose_encoding_to_camera(pred_pose_enc.float(), pose_encoding_type='train')
pred_cameras_list = pred_cameras_list + [pred_cameras]
return pred_cameras_list, rgb_feat
def get_backbone(self, backbone):
"""
Load the backbone model.
"""
if backbone == "dinov2s":
return torch.hub.load("facebookresearch/dinov2", "dinov2_vits14_reg")
elif backbone == "dinov2b":
return torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14_reg")
else:
raise NotImplementedError(f"Backbone '{backbone}' not implemented")
def _resnet_normalize_image(self, img: torch.Tensor) -> torch.Tensor:
return (img - self._resnet_mean) / self._resnet_std
|