FLARE / mast3r /catmlp_dpt_head.py
聂如
Add design file
91126af
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# MASt3R heads
# --------------------------------------------------------
import torch
import torch.nn.functional as F
import mast3r.utils.path_to_dust3r # noqa
from dust3r.heads.postprocess import reg_dense_depth, reg_dense_conf # noqa
from dust3r.heads.dpt_head import PixelwiseTaskWithDPT # noqa
import dust3r.utils.path_to_croco # noqa
from models.blocks import Mlp # noqa
import torch.nn as nn
def reg_desc(desc, mode):
if 'norm' in mode:
desc = desc / desc.norm(dim=-1, keepdim=True)
else:
raise ValueError(f"Unknown desc mode {mode}")
return desc
def postprocess(out, depth_mode, conf_mode, desc_dim=None, desc_mode='norm', two_confs=False, desc_conf_mode=None):
if desc_conf_mode is None:
desc_conf_mode = conf_mode
fmap = out.permute(0, 2, 3, 1) # B,H,W,D
res = dict(pts3d=reg_dense_depth(fmap[..., 0:3], mode=depth_mode))
if conf_mode is not None:
res['conf'] = reg_dense_conf(fmap[..., 3], mode=conf_mode)
if desc_dim is not None:
start = 3 + int(conf_mode is not None)
res['desc'] = fmap[..., start:]
# if two_confs:
# res['desc_conf'] = reg_dense_conf(fmap[..., start + desc_dim], mode=desc_conf_mode)
# else:
# res['desc_conf'] = res['conf'].clone()
return res
class Cat_MLP_LocalFeatures_DPT_Pts3d(PixelwiseTaskWithDPT):
""" Mixture between MLP and DPT head that outputs 3d points and local features (with MLP).
The input for both heads is a concatenation of Encoder and Decoder outputs
"""
def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None,
num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs):
super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx,
dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type)
self.local_feat_dim = local_feat_dim
patch_size = net.patch_embed.patch_size
if isinstance(patch_size, tuple):
assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance(
patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints."
assert patch_size[0] == patch_size[1], "Error, non square patches not managed"
patch_size = patch_size[0]
self.patch_size = patch_size
self.desc_mode = net.desc_mode
self.has_conf = has_conf
self.two_confs = net.two_confs # independent confs for 3D regr and descs
self.desc_conf_mode = net.desc_conf_mode
idim = net.enc_embed_dim + net.dec_embed_dim
self.head_local_features = Mlp(in_features=idim,
hidden_features=int(hidden_dim_factor * idim),
out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2)
def forward(self, decout, img_shape):
# pass through the heads
pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1]))
# recover encoder and decoder outputs
enc_output, dec_output = decout[0], decout[-1]
cat_output = torch.cat([enc_output, dec_output], dim=-1) # concatenate
H, W = img_shape
B, S, D = cat_output.shape
# extract local_features
local_features = self.head_local_features(cat_output) # B,S,D
local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size)
local_features = F.pixel_shuffle(local_features, self.patch_size) # B,d,H,W
# post process 3D pts, descriptors and confidences
out = torch.cat([pts3d, local_features], dim=1)
if self.postprocess:
out = self.postprocess(out,
depth_mode=self.depth_mode,
conf_mode=self.conf_mode,
desc_dim=self.local_feat_dim,
desc_mode=self.desc_mode,
two_confs=self.two_confs,
desc_conf_mode=self.desc_conf_mode)
# out.update({'local_token': local_token})
return out
class DPT_depth(PixelwiseTaskWithDPT):
""" Mixture between MLP and DPT head that outputs 3d points and local features (with MLP).
The input for both heads is a concatenation of Encoder and Decoder outputs
"""
def __init__(self, net, has_conf=False, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None,
num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs):
super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx,
dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type)
patch_size = net.patch_embed.patch_size
if isinstance(patch_size, tuple):
assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance(
patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints."
assert patch_size[0] == patch_size[1], "Error, non square patches not managed"
patch_size = patch_size[0]
self.patch_size = patch_size
self.desc_mode = net.desc_mode
self.has_conf = has_conf
self.two_confs = net.two_confs # independent confs for 3D regr and descs
self.desc_conf_mode = net.desc_conf_mode
idim = net.enc_embed_dim + net.dec_embed_dim
# self.conf_mode = conf_mode
def forward(self, decout, img_shape):
# pass through the heads
pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1]))
out = pts3d
# post process 3D pts, descriptors and confidences
# out = torch.cat([pts3d, local_features], dim=1)
fmap = out.permute(0, 2, 3, 1) # B,H,W,3
res = {}
res['depth'] = torch.exp(fmap[...,:1]-1).clamp(0.0001, 1000.)
# res['depth_scaling'] = fmap[...,1:4]
res['depth_conf'] = reg_dense_conf(fmap[..., -1:], mode=self.conf_mode)
res['desc'] = fmap[..., 1:]
# out.update({'local_token': local_token})
return res
class Cat_GS_LocalFeatures_DPT_Pts3d(PixelwiseTaskWithDPT):
""" Mixture between MLP and DPT head that outputs 3d points and local features (with MLP).
The input for both heads is a concatenation of Encoder and Decoder outputs
"""
def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None,
num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs):
super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx,
dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type)
self.local_feat_dim = local_feat_dim
patch_size = net.patch_embed.patch_size
if isinstance(patch_size, tuple):
assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance(
patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints."
assert patch_size[0] == patch_size[1], "Error, non square patches not managed"
patch_size = patch_size[0]
self.patch_size = patch_size
self.desc_mode = net.desc_mode
self.has_conf = has_conf
self.two_confs = net.two_confs # independent confs for 3D regr and descs
self.desc_conf_mode = net.desc_conf_mode
idim = net.enc_embed_dim + net.dec_embed_dim
def forward(self, decout, img_shape):
# pass through the heads
out = self.dpt(decout, image_size=(img_shape[0], img_shape[1]))
# recover encoder and decoder outputs
# enc_output, dec_output = decout[0], decout[-1]
# cat_output = torch.cat([enc_output, dec_output], dim=-1) # concatenate
# H, W = img_shape
# B, S, D = cat_output.shape
# post process 3D pts, descriptors and confidences
# out = torch.cat([pts3d, local_features], dim=1)
if self.postprocess:
out = self.postprocess(out,
depth_mode=self.depth_mode,
conf_mode=self.conf_mode,
desc_dim=self.local_feat_dim,
desc_mode=self.desc_mode,
two_confs=self.two_confs,
desc_conf_mode=self.desc_conf_mode)
# out.update({'local_token': local_token})
return out
class UNet(nn.Module):
def __init__(self, in_channels, out_channels, hidden_dim):
super(UNet, self).__init__()
# 编码器
self.enc1 = self.conv_block(in_channels, hidden_dim)
# self.downsample = nn.Conv2d(hidden_dim, hidden_dim * 2, kernel_size=2, stride=2) # 下采样
# 解码器
# self.dec1 = self.upconv_block(hidden_dim * 2, hidden_dim)
self.dec2 = nn.Conv2d(hidden_dim, out_channels, kernel_size=3, padding=1)
def conv_block(self, in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.GELU(),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.GELU()
)
def upconv_block(self, in_channels, out_channels):
return nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2),
nn.GELU()
)
def forward(self, x):
# 编码
enc1 = self.enc1(x)
dec2 = self.dec2(enc1)
return dec2
class gs_head_heavy(nn.Module):
def __init__(self,
feature_dim,
last_dim,
high_feature,
sh_degree = 2,
):
super().__init__()
self.high_feature = high_feature
self.high_feature_fusion = UNet(high_feature, high_feature, high_feature)
sh_degree = sh_degree
self.feat_sh = nn.Sequential(
nn.Conv2d(feature_dim, last_dim, kernel_size=3, stride=1, padding=1),
nn.GELU(),
)
self.color = nn.Conv2d(last_dim, 3, kernel_size=1, stride=1, padding=0)
self.sh_high_fre = nn.Conv2d(last_dim, (sh_degree + 1) ** 2 * 3 - 3, kernel_size=1, stride=1, padding=0)
self.feat_opacity = nn.Sequential(
nn.Conv2d(feature_dim, last_dim, kernel_size=3, stride=1, padding=1),
nn.GELU(),
nn.Conv2d(last_dim, 1, kernel_size=1, stride=1, padding=0)
)
self.feat_scaling = nn.Sequential(
nn.Conv2d(high_feature, last_dim, kernel_size=3, stride=1, padding=1),
nn.GELU(),
nn.Conv2d(last_dim, 3, kernel_size=1, stride=1, padding=0)
)
self.feat_rotation = nn.Sequential(
nn.Conv2d(high_feature, last_dim, kernel_size=3, stride=1, padding=1),
nn.GELU(),
nn.Conv2d(last_dim, 4, kernel_size=1, stride=1, padding=0)
)
self.feat_scaling[-1].weight.data.normal_(mean=0, std=0.02)
self.feat_opacity[-1].weight.data.normal_(mean=0, std=0.02)
self.color.weight.data.normal_(mean=0, std=0.88)
self.sh_high_fre.weight.data.normal_(mean=0, std=0.02)
def forward(self, x, true_shape):
# H, W = x.shape[-2:]
# if H != H_org or W != W_org:
# x = x.permute(0, 1, 3, 2)
x = x[0]
x = x.permute(0,3,1,2) # B,H,W,D
assert x.shape[-1] == true_shape[-1]
high_feature = self.high_feature_fusion(x[:, :self.high_feature])
fusion_feature = torch.cat([high_feature, x[:, self.high_feature:]], dim=1)
feat_opacity = self.feat_opacity(fusion_feature)
feat_scaling = self.feat_scaling(high_feature)
feat_rotation = self.feat_rotation(high_feature)
featuresh = self.feat_sh(fusion_feature)
feat_color = self.color(featuresh)
feat_sh = self.sh_high_fre(featuresh)
feat_feature = torch.cat([feat_color, feat_sh], dim=1)
feat_feature = feat_feature.permute(0, 2, 3, 1) # B,H,W,3
feat_opacity = feat_opacity - 2
feat_opacity = feat_opacity.permute(0, 2, 3, 1) # B,H,W,1
feat_scaling = feat_scaling.permute(0, 2, 3, 1) # B,H,W,1
feat_rotation = feat_rotation.permute(0, 2, 3, 1) # B,H,W,1
res = dict(feature=feat_feature, opacity=feat_opacity, scaling=feat_scaling, rotation=feat_rotation)
return res
class gs_head(nn.Module):
def __init__(self,
feature_dim,
last_dim,
high_feature,
):
super().__init__()
self.high_feature = high_feature
self.feat_feature = nn.Sequential(
nn.Conv2d(feature_dim, last_dim, kernel_size=3, stride=1, padding=1),
nn.GELU(),
nn.Conv2d(last_dim, 3, kernel_size=1, stride=1, padding=0)
)
self.feat_opacity = nn.Sequential(
nn.Conv2d(feature_dim, last_dim, kernel_size=3, stride=1, padding=1),
nn.GELU(),
nn.Conv2d(last_dim, 1, kernel_size=1, stride=1, padding=0)
)
self.feat_scaling = nn.Sequential(
nn.Conv2d(high_feature, last_dim, kernel_size=3, stride=1, padding=1),
nn.GELU(),
nn.Conv2d(last_dim, 3, kernel_size=1, stride=1, padding=0)
)
self.feat_rotation = nn.Sequential(
nn.Conv2d(high_feature, last_dim, kernel_size=3, stride=1, padding=1),
nn.GELU(),
nn.Conv2d(last_dim, 4, kernel_size=1, stride=1, padding=0)
)
self.feat_scaling[-1].weight.data.normal_(mean=0, std=0.02)
self.feat_opacity[-1].weight.data.normal_(mean=0, std=0.02)
self.feat_feature[-1].weight.data.normal_(mean=0, std=0.5)
def forward(self, x, true_shape):
# H, W = x.shape[-2:]
# if H != H_org or W != W_org:
# x = x.permute(0, 1, 3, 2)
x = x[0]
x = x.permute(0,3,1,2) # B,H,W,D
assert x.shape[-1] == true_shape[-1]
feat_opacity = self.feat_opacity(x)
feat_scaling = self.feat_scaling(x[:, :self.high_feature])
feat_rotation = self.feat_rotation(x[:, :self.high_feature])
feat_feature = self.feat_feature(x)
feat_feature = feat_feature.permute(0, 2, 3, 1) # B,H,W,3
feat_opacity = feat_opacity - 2
feat_opacity = feat_opacity.permute(0, 2, 3, 1) # B,H,W,1
feat_scaling = feat_scaling.permute(0, 2, 3, 1) # B,H,W,1
feat_rotation = feat_rotation.permute(0, 2, 3, 1) # B,H,W,1
res = dict(feature=feat_feature, opacity=feat_opacity, scaling=feat_scaling, rotation=feat_rotation)
return res
def mast3r_head_factory(head_type, output_mode, net, has_conf=False, sh_degree=2):
"""" build a prediction head for the decoder
"""
if head_type == 'catmlp+dpt' and output_mode.startswith('pts3d+desc'):
local_feat_dim = int(output_mode[10:])
assert net.dec_depth > 9
l2 = net.dec_depth
feature_dim = 256
last_dim = feature_dim // 2
out_nchan = 3
ed = net.enc_embed_dim
dd = net.dec_embed_dim
return Cat_MLP_LocalFeatures_DPT_Pts3d(net, local_feat_dim=local_feat_dim, has_conf=has_conf,
num_channels=out_nchan + has_conf,
feature_dim=feature_dim,
last_dim=last_dim,
hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2],
dim_tokens=[ed, dd, dd, dd],
postprocess=postprocess,
depth_mode=net.depth_mode,
conf_mode=net.conf_mode,
head_type='regression')
elif output_mode=='depth_conf_scaling':
local_feat_dim = 24
assert net.dec_depth > 9
l2 = net.dec_depth
feature_dim = 256
last_dim = feature_dim // 2
out_nchan = 1
ed = net.enc_embed_dim
dd = net.dec_embed_dim
return DPT_depth(net, has_conf=has_conf,
num_channels=out_nchan + local_feat_dim + net.two_confs,
feature_dim=feature_dim,
last_dim=last_dim,
hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2],
dim_tokens=[ed, dd, dd, dd],
postprocess=postprocess,
depth_mode=net.depth_mode,
conf_mode=net.conf_mode,
head_type='regression')
elif head_type == 'dpt_gs' and output_mode.startswith('pts3d+desc'):
local_feat_dim = int(output_mode[10:])
assert net.dec_depth > 9
l2 = net.dec_depth
feature_dim = 256
last_dim = feature_dim // 2
out_nchan = 3
ed = net.enc_embed_dim
dd = net.dec_embed_dim
return Cat_GS_LocalFeatures_DPT_Pts3d(net, has_conf=has_conf,
num_channels=out_nchan + has_conf + local_feat_dim + net.two_confs,
feature_dim=feature_dim,
last_dim=last_dim,
hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2],
dim_tokens=[ed, dd, dd, dd],
postprocess=postprocess,
depth_mode=net.depth_mode,
conf_mode=net.conf_mode,
head_type='regression')
elif head_type == 'gs':
local_feat_dim = int(output_mode[10:]) + 1 + 16
return gs_head(feature_dim=local_feat_dim, last_dim=local_feat_dim//2, high_feature=int(output_mode[10:]) + 1)
elif head_type == 'sh':
local_feat_dim = int(output_mode[10:]) + 1 + 16
return gs_head_heavy(feature_dim=local_feat_dim, last_dim=local_feat_dim//2, high_feature=int(output_mode[10:]) + 1, sh_degree=sh_degree)
else:
raise NotImplementedError(
f"unexpected {head_type=} and {output_mode=}")