Spaces:
Running
Running
File size: 1,749 Bytes
658cb5f d1f15f8 658cb5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
title: OmniSearchLeaderboard
emoji: π¨
colorFrom: pink
colorTo: green
sdk: streamlit
sdk_version: 1.44.1
app_file: app.py
pinned: false
license: apache-2.0
---
# π Dyn-VQA Dataset
π Dataset for [*Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent*](https://arxiv.org/abs/2411.02937)
π This dataset is linked to GitHub at [this URL](<https://github.com/Alibaba-NLP/OmniSearch>).
The json item of Dyn-VQA dataset is organized in the following format:
```json
{
"image_url": "https://www.pcarmarket.com/static/media/uploads/galleries/photos/uploads/galleries/22387-pasewark-1986-porsche-944/.thumbnails/IMG_7102.JPG.jpg/IMG_7102.JPG-tiny-2048x0-0.5x0.jpg",
"question": "What is the model of car from this brand?",
"question_id": 'qid',
"answer": ["δΏζΆζ· 944", "Porsche 944."]
}
```
π₯ The Dyn-VQA **will be updated regularly.** Laset version: 202502.
## π Citation
```bigquery
@article{li2024benchmarkingmultimodalretrievalaugmented,
title={Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent},
author={Yangning Li and Yinghui Li and Xinyu Wang and Yong Jiang and Zhen Zhang and Xinran Zheng and Hui Wang and Hai-Tao Zheng and Pengjun Xie and Philip S. Yu and Fei Huang and Jingren Zhou},
year={2024},
eprint={2411.02937},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.02937},
}
```
When citing our work, please kindly consider citing the original papers. The relevant citation information is listed here.
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|