zhzhen23's picture
Update app.py
3cd0e82 verified
import streamlit as st
import pandas as pd
# 引入自定义CSS以调整页面布局
st.markdown(
"""
<style>
/* 控制内容的宽度和居中 */
.reportview-container {
max-width: 800px; /* 控制最大宽度 */
margin-left: auto; /* 居中 */
margin-right: auto;
}
/* 新增:减少页面两边的空白 */
.streamlit-container {
padding: 0px 10px; /* 左右边距 */
}
/* 控制TXT标签内的字体大小 */
h2, h3, h4, h5, h6 {
font-size: 16px; /* 适当减小字体大小 */
}
/* 控制表格样式 */
.dataframe {
width: 100% !important; /* 使表格宽度100% */
border: none; /* 去掉表格边框 */
}
</style>
""",
unsafe_allow_html=True
)
# 设置页面标题
st.title("🏆 Dyn-VQA Leaderboard")
# 使用 container 来减少空白
with st.container():
# 数据集简介
st.subheader("📑 Dataset Description")
st.markdown('🌟 Dataset for [*Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent*](https://arxiv.org/abs/2411.02937).')
st.markdown('🌟 This dataset is linked to GitHub at [this URL](https://github.com/Alibaba-NLP/OmniSearch)')
# 实验Leaderboard榜单数据
data = {
"Model": [
"Omnisearch(gpt-4o)", "gpt-4o Two-Step mRAG", "gpt-4o Original LLMs",
"qwen-vl-max Two-Step mRAG", "qwen25-vl-7b Two-Step mRAG",
"gpt-4o Retrieving Images with Input Images", "deepseek-vl-7b-chat Two-Step mRAG",
"qwen-vl-max Original LLMs", "deepseek-vl2 Two-Step mRAG",
"qwen-vl-max Retrieving Images with Input Images", "qwen25-vl-7b Retrieving Images with Input Images",
"qwen25-vl-7b Original LLMs", "deepseek-vl-7b-chat Retrieving Images with Input Images",
"deepseek-vl2 Retrieving Images with Input Images", "deepseek-vl2 Original LLMs",
"deepseek-vl-7b-chat Original LLMs"
],
"zh_Dynvqa": [
54.23, 52.78, 46.54, 50.75, 46.27,
40.84, 39.48, 32.84, 28.36, 25.37,
21.98, 18.86, 13.03, 9.91, 9.50,
8.68
],
"en_Dynvqa": [
47.17, 45.03, 42.66, 37.76, 35.24,
40.42, 28.11, 32.87, 26.01, 25.17,
21.26, 19.71, 10.77, 12.73, 12.87,
8.67
],
"average": [
50.7, 48.905, 44.6, 44.255, 40.755,
40.63, 33.795, 32.855, 27.185, 25.27,
21.62, 19.285, 11.9, 11.32, 11.185,
8.675
]
}
# 将数据转换为DataFrame
df = pd.DataFrame(data)
# 显示Leaderboard表格
st.subheader("🕹️ Experiment Leaderboard")
st.dataframe(df)
# 数据格式示例
st.subheader("Data Format")
st.json({
"image_url": "https://www.pcarmarket.com/static/media/uploads/galleries/photos/uploads/galleries/22387-pasewark-1986-porsche-944/.thumbnails/IMG_7102.JPG.jpg",
"question": "What is the model of car from this brand?",
"question_id": 'qid',
"answer": ["保时捷 944", "Porsche 944."]
})
# 更新信息
st.markdown("🔥 The Dyn-VQA **will be updated regularly.** Latest version: 202502.")
# 引用信息
st.subheader("📝 Citation")
st.code("""
@article{li2024benchmarkingmultimodalretrievalaugmented,
title={Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent},
author={Yangning Li and Yinghui Li and Xinyu Wang and Yong Jiang and Zhen Zhang and Xinran Zheng and Hui Wang and Hai-Tao Zheng and Pengjun Xie and Philip S. Yu and Fei Huang and Jingren Zhou},
year={2024},
eprint={2411.02937},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.02937},
}
""")
st.write("When citing our work, please kindly consider citing the original papers. The relevant citation information is listed here.")