import streamlit as st import pandas as pd # 引入自定义CSS以调整页面布局 st.markdown( """ """, unsafe_allow_html=True ) # 设置页面标题 st.title("🏆 Dyn-VQA Leaderboard") # 使用 container 来减少空白 with st.container(): # 数据集简介 st.subheader("📑 Dataset Description") st.markdown('🌟 Dataset for [*Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent*](https://arxiv.org/abs/2411.02937).') st.markdown('🌟 This dataset is linked to GitHub at [this URL](https://github.com/Alibaba-NLP/OmniSearch)') # 实验Leaderboard榜单数据 data = { "Model": [ "Omnisearch(gpt-4o)", "gpt-4o Two-Step mRAG", "gpt-4o Original LLMs", "qwen-vl-max Two-Step mRAG", "qwen25-vl-7b Two-Step mRAG", "gpt-4o Retrieving Images with Input Images", "deepseek-vl-7b-chat Two-Step mRAG", "qwen-vl-max Original LLMs", "deepseek-vl2 Two-Step mRAG", "qwen-vl-max Retrieving Images with Input Images", "qwen25-vl-7b Retrieving Images with Input Images", "qwen25-vl-7b Original LLMs", "deepseek-vl-7b-chat Retrieving Images with Input Images", "deepseek-vl2 Retrieving Images with Input Images", "deepseek-vl2 Original LLMs", "deepseek-vl-7b-chat Original LLMs" ], "zh_Dynvqa": [ 54.23, 52.78, 46.54, 50.75, 46.27, 40.84, 39.48, 32.84, 28.36, 25.37, 21.98, 18.86, 13.03, 9.91, 9.50, 8.68 ], "en_Dynvqa": [ 47.17, 45.03, 42.66, 37.76, 35.24, 40.42, 28.11, 32.87, 26.01, 25.17, 21.26, 19.71, 10.77, 12.73, 12.87, 8.67 ], "average": [ 50.7, 48.905, 44.6, 44.255, 40.755, 40.63, 33.795, 32.855, 27.185, 25.27, 21.62, 19.285, 11.9, 11.32, 11.185, 8.675 ] } # 将数据转换为DataFrame df = pd.DataFrame(data) # 显示Leaderboard表格 st.subheader("🕹️ Experiment Leaderboard") st.dataframe(df) # 数据格式示例 st.subheader("Data Format") st.json({ "image_url": "https://www.pcarmarket.com/static/media/uploads/galleries/photos/uploads/galleries/22387-pasewark-1986-porsche-944/.thumbnails/IMG_7102.JPG.jpg", "question": "What is the model of car from this brand?", "question_id": 'qid', "answer": ["保时捷 944", "Porsche 944."] }) # 更新信息 st.markdown("🔥 The Dyn-VQA **will be updated regularly.** Latest version: 202502.") # 引用信息 st.subheader("📝 Citation") st.code(""" @article{li2024benchmarkingmultimodalretrievalaugmented, title={Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent}, author={Yangning Li and Yinghui Li and Xinyu Wang and Yong Jiang and Zhen Zhang and Xinran Zheng and Hui Wang and Hai-Tao Zheng and Pengjun Xie and Philip S. Yu and Fei Huang and Jingren Zhou}, year={2024}, eprint={2411.02937}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2411.02937}, } """) st.write("When citing our work, please kindly consider citing the original papers. The relevant citation information is listed here.")