File size: 8,768 Bytes
aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 aaf7608 2ed9181 c1b32e3 2ed9181 c1b32e3 2ed9181 c1b32e3 2ed9181 c1b32e3 2ed9181 aaf7608 c1b32e3 aaf7608 2ed9181 c1b32e3 2ed9181 aaf7608 2ed9181 aaf7608 c1b32e3 aaf7608 c1b32e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import pandas as pd
import numpy as np
import zipfile
import os
import re
import torch
import shutil
# =======================================================
# 1) Load Mistral LLM (FP16)
# =======================================================
llm = pipeline(
"text-generation",
model="mistralai/Mistral-7B-Instruct-v0.2",
torch_dtype=torch.float16,
device_map="auto"
)
# =======================================================
# 2) Load Embedding Model (Legal-BERT)
# =======================================================
embedding_model = SentenceTransformer("nlpaueb/legal-bert-base-uncased")
# =======================================================
# 3) Extract the ZIP dataset
# =======================================================
zip_path = "/app/provinces.zip" # Make sure this is uploaded in your HF Space
extract_folder = "/app/provinces_texts"
if os.path.exists(extract_folder):
shutil.rmtree(extract_folder)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_folder)
date_pattern = re.compile(r"(\d{4}[-]\d{2}[_-]\d{2})")
# =======================================================
# 4) Parse TXT files into documents
# =======================================================
def parse_metadata_and_content(raw_text):
if "CONTENT:" not in raw_text:
raise ValueError("File missing CONTENT: separator.")
header, content = raw_text.split("CONTENT:", 1)
metadata = {}
pdf_list = []
for line in header.strip().split("\n"):
if ":" in line and not line.strip().startswith("-"):
key, value = line.split(":", 1)
metadata[key.strip().upper()] = value.strip()
elif line.strip().startswith("-"):
pdf_list.append(line.strip())
if pdf_list:
metadata["PDF_LINKS"] = "\n".join(pdf_list)
return metadata, content.strip()
documents = []
for root, dirs, files in os.walk(extract_folder):
for filename in files:
if filename.startswith("._") or not filename.endswith(".txt"):
continue
filepath = os.path.join(root, filename)
try:
with open(filepath, "r", encoding="latin-1") as f:
raw = f.read()
metadata, content = parse_metadata_and_content(raw)
paragraphs = [p.strip() for p in content.split("\n\n") if p.strip()]
for p in paragraphs:
documents.append({
"source_title": metadata.get("SOURCE_TITLE", "Unknown"),
"province": metadata.get("PROVINCE", "Unknown"),
"last_updated": metadata.get("LAST_UPDATED", "Unknown"),
"url": metadata.get("URL", "N/A"),
"pdf_links": metadata.get("PDF_LINKS", ""),
"text": p
})
except Exception as e:
print(f"Skipping {filepath}: {e}")
print(f"Loaded {len(documents)} paragraphs from all provinces.")
# =======================================================
# 5) Build embeddings & dataframe
# =======================================================
texts = [d["text"] for d in documents]
embeddings = embedding_model.encode(texts).astype("float16")
df = pd.DataFrame(documents)
df["Embedding"] = list(embeddings)
print("Indexing complete. Total:", len(df))
# =======================================================
# 6) Retrieval
# =======================================================
def retrieve_with_pandas(query, province=None, top_k=2):
query_emb = embedding_model.encode([query])[0]
filtered = df if province is None else df[df["province"] == province]
filtered = filtered.copy()
filtered["Similarity"] = filtered["Embedding"].apply(
lambda x: np.dot(query_emb, x) / (np.linalg.norm(query_emb) * np.linalg.norm(x))
)
return filtered.sort_values("Similarity", ascending=False).head(top_k)
# =======================================================
# 7) Province detection
# =======================================================
def detect_province(query):
provinces = {
"yukon": "Yukon",
"alberta": "Alberta",
"bc": "British Columbia",
"british columbia": "British Columbia",
"manitoba": "Manitoba",
"nl": "Newfoundland and Labrador",
"newfoundland": "Newfoundland and Labrador",
"sask": "Saskatchewan",
"saskatchewan": "Saskatchewan",
"ontario": "Ontario",
"pei": "Prince Edward Island",
"prince edward island": "Prince Edward Island",
"quebec": "Quebec",
"nb": "New Brunswick",
"new brunswick": "New Brunswick",
"nova scotia": "Nova Scotia",
"nunavut": "Nunavut",
"nwt": "Northwest Territories",
"northwest territories": "Northwest Territories"
}
q = query.lower()
for key, prov in provinces.items():
if key in q:
return prov
return None
# =======================================================
# 8) Guardrails
# =======================================================
def is_disallowed(query):
banned = ["suicide", "harm yourself", "bomb", "weapon"]
return any(b in query.lower() for b in banned)
def is_off_topic(query):
tenancy_keywords = [
"tenant", "landlord", "rent", "evict", "lease", "deposit",
"tenancy", "rental", "apartment", "unit", "repair", "pets",
"heating", "notice"
]
q = query.lower()
return not any(k in q for k in tenancy_keywords)
INTRO_TEXT = (
"Hi! I'm a Canadian rental housing assistant. I can help you find, summarize, "
"and explain information from the Residential Tenancies Acts across all provinces.\n\n"
"**Important:** I'm not a lawyer and this is **not legal advice**."
)
# =======================================================
# 9) RAG Generation
# =======================================================
def generate_with_rag(query, province=None, top_k=2):
if is_disallowed(query):
return "Sorry — I can’t help with harmful or dangerous topics."
if is_off_topic(query):
return "Sorry — I can only answer questions about Canadian tenancy and housing law."
if province is None:
province = detect_province(query)
top_docs = retrieve_with_pandas(query, province=province, top_k=top_k)
if len(top_docs) == 0:
return "Sorry — I couldn't find matching information."
context = " ".join(top_docs["text"].tolist())
qa_examples = """
Q: My landlord took too long to install a safety item. Is that allowed?
A: Landlords should respond promptly to reasonable accommodation requests.
Q: I have kids making noise. Can I be evicted?
A: Reasonable family noise is expected; eviction should not be based on discrimination.
"""
prompt = f"""
Use the examples ONLY AS A STYLE GUIDE.
Do not repeat them and do not invent laws.
If the context does not contain the answer, say so.
Context:
{context}
Question:
{query}
Answer conversationally:
"""
output = llm(prompt, max_new_tokens=150)[0]["generated_text"]
answer = output.split("Answer conversationally:", 1)[-1].strip()
metadata = ""
for _, row in top_docs.iterrows():
metadata += (
f"- Province: {row['province']}\n"
f" Source: {row['source_title']}\n"
f" Updated: {row['last_updated']}\n"
f" URL: {row['url']}\n"
)
return f"{answer}\n\nSources Used:\n{metadata}"
# =======================================================
# 10) Gradio Chat Interface (INTRO only once, FIXED)
# =======================================================
INTRO_TUPLE = (None, INTRO_TEXT)
def chat_api(message, history):
# history is a list of tuples: [(user, bot), ...]
# Add user message
history.append((message, None))
# Generate bot reply
reply = generate_with_rag(message)
# Replace last tuple with completed (user, bot) pair
history[-1] = (message, reply)
return history, history
with gr.Blocks() as demo:
gr.Markdown("## Canada Residential Tenancy Assistant (RAG + Mistral 7B)")
chatbot = gr.Chatbot(
value=[INTRO_TUPLE], # must be a list of tuples!
height=500,
)
user_box = gr.Textbox(
label="Your question",
placeholder="Ask a question about rentals, repairs, evictions, deposits, etc..."
)
send_btn = gr.Button("Send")
send_btn.click(chat_api, inputs=[user_box, chatbot], outputs=[chatbot, chatbot])
user_box.submit(chat_api, inputs=[user_box, chatbot], outputs=[chatbot, chatbot])
if __name__ == "__main__":
demo.launch(share=True) |