Spaces:
Sleeping
Sleeping
File size: 8,505 Bytes
9c66a72 d5857d2 8babbb9 85551a0 8babbb9 85551a0 8babbb9 85551a0 8babbb9 9cfac5d 9c66a72 8babbb9 85551a0 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 85551a0 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 85551a0 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 85551a0 9c66a72 8babbb9 85551a0 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 85551a0 9c66a72 8babbb9 85551a0 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 9cfac5d 53f7835 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 8babbb9 9c66a72 edf2f5e 9c66a72 8babbb9 85551a0 9c66a72 edf2f5e 53f7835 edf2f5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import pandas as pd
import numpy as np
import zipfile
import os
import re
import torch
# -----------------------------
# Load Mistral pipeline
# -----------------------------
llm = pipeline(
"text-generation",
model="mistralai/Mistral-7B-Instruct-v0.2",
torch_dtype=torch.float16,
device_map="auto"
)
# -----------------------------
# Load SentenceTransformer embeddings
# -----------------------------
embedding_model = SentenceTransformer("nlpaueb/legal-bert-base-uncased")
# -----------------------------
# Extract Provinces ZIP
# -----------------------------
zip_path = "/app/provinces.zip" # Make sure you upload this to your HF Space
extract_folder = "/app/provinces_texts"
# Remove old folder if exists
if os.path.exists(extract_folder):
import shutil
shutil.rmtree(extract_folder)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_folder)
# Regex to capture YYYY_MM_DD or YYYY-MM-DD anywhere in filename
date_pattern = re.compile(r"(\d{4}[-]\d{2}[_-]\d{2})")
# -----------------------------
# Parse TXT files and create documents
# -----------------------------
def parse_metadata_and_content(raw_text):
if "CONTENT:" not in raw_text:
raise ValueError("File missing CONTENT: separator.")
header, content = raw_text.split("CONTENT:", 1)
metadata = {}
lines = header.strip().split("\n")
pdf_list = []
for line in lines:
if ":" in line and not line.strip().startswith("-"):
key, value = line.split(":", 1)
metadata[key.strip().upper()] = value.strip()
elif line.strip().startswith("-"):
pdf_list.append(line.strip())
if pdf_list:
metadata["PDF_LINKS"] = "\n".join(pdf_list)
return metadata, content.strip()
documents = []
for root, dirs, files in os.walk(extract_folder):
for filename in files:
if filename.startswith("._") or not filename.endswith(".txt"):
continue
filepath = os.path.join(root, filename)
try:
with open(filepath, "r", encoding="latin-1") as f:
raw = f.read()
metadata, content = parse_metadata_and_content(raw)
paragraphs = [p.strip() for p in content.split("\n\n") if p.strip()]
for p in paragraphs:
documents.append({
"source_title": metadata.get("SOURCE_TITLE", "Unknown"),
"province": metadata.get("PROVINCE", "Unknown"),
"last_updated": metadata.get("LAST_UPDATED", "Unknown"),
"url": metadata.get("URL", "N/A"),
"pdf_links": metadata.get("PDF_LINKS", ""),
"text": p
})
except ValueError as e:
print(f"Skipping {filepath}: {e}")
continue
print(f"Loaded {len(documents)} paragraphs from all provinces.")
# -----------------------------
# Create embeddings and dataframe
# -----------------------------
texts = [d["text"] for d in documents]
embeddings = embedding_model.encode(texts).astype("float16")
df = pd.DataFrame(documents)
df["Embedding"] = list(embeddings)
print("Indexing complete. Total:", len(df))
# -----------------------------
# Retrieve with Pandas
# -----------------------------
def retrieve_with_pandas(query, province=None, top_k=2):
query_emb = embedding_model.encode([query])[0]
if province is not None:
filtered_df = df[df['province'] == province].copy()
else:
filtered_df = df.copy()
filtered_df['Similarity'] = filtered_df['Embedding'].apply(
lambda x: np.dot(query_emb, x) / (np.linalg.norm(query_emb) * np.linalg.norm(x))
)
return filtered_df.sort_values("Similarity", ascending=False).head(top_k)
# -----------------------------
# Province detection
# -----------------------------
def detect_province(query):
provinces = {
"yukon": "Yukon",
"alberta": "Alberta",
"bc": "British Columbia",
"british columbia": "British Columbia",
"manitoba": "Manitoba",
"nl": "Newfoundland and Labrador",
"newfoundland": "Newfoundland and Labrador",
"sask": "Saskatchewan",
"saskatchewan": "Saskatchewan",
"ontario": "Ontario",
"pei": "Prince Edward Island",
"prince edward island": "Prince Edward Island",
"quebec": "Quebec",
"nb": "New Brunswick",
"new brunswick": "New Brunswick",
"nova scotia": "Nova Scotia",
"nunavut": "Nunavut",
"nwt": "Northwest Territories",
"northwest territories": "Northwest Territories"
}
q = query.lower()
for key, prov in provinces.items():
if key in q:
return prov
return None
# -----------------------------
# Guardrails
# -----------------------------
def is_disallowed(query):
banned = ["kill", "suicide", "harm yourself", "bomb", "weapon"]
return any(b in query.lower() for b in banned)
def is_off_topic(query):
tenancy_keywords = [
"tenant", "landlord", "rent", "evict", "lease",
"deposit", "tenancy", "rental", "apartment",
"unit", "heating", "notice", "repair", "pets"
]
q = query.lower()
return not any(k in q for k in tenancy_keywords)
INTRO_TEXT = (
"Hi! I'm a Canadian rental housing assistant. I can help you find, summarize, "
"and explain information from the Residential Tenancies Acts across all provinces and territories.\n\n"
"**Important:** I'm not a lawyer and this is **not legal advice**. Use your own judgment.\n\n"
)
# -----------------------------
# RAG generation function
# -----------------------------
def generate_with_rag(query, province=None, top_k=2):
if is_disallowed(query):
return INTRO_TEXT + "Sorry — I can’t help with harmful or dangerous topics."
if is_off_topic(query):
return INTRO_TEXT + "Sorry — I can only answer questions about Canadian tenancy and housing law."
if province is None:
province = detect_province(query)
top_docs = retrieve_with_pandas(query, province=province, top_k=top_k)
if top_docs is None or len(top_docs) == 0:
return INTRO_TEXT + "Sorry — I couldn't find any matching information in the tenancy database."
context = " ".join(top_docs["text"].tolist())
# Few-shot style examples (style guide)
qa_examples = """
Q: I asked my landlord three months ago to install handrails in my bathroom. Can the landlord take a long time to respond?
A: Landlords should respond promptly to reasonable accommodation requests. If they delay unreasonably, you can file a discrimination complaint.
Q: My building manager keeps complaining about my children’s noise. Can I be evicted?
A: Reasonable noise from children is expected. If you're treated differently because you have children, you may file a complaint based on family status.
"""
prompt = f"""
Use the examples as a STYLE GUIDE ONLY.
DO NOT repeat the example questions.
DO NOT invent laws — only use the context provided.
If the context does not contain the answer, say you cannot confidently answer.
{qa_examples}
Context:
{context}
Question:
{query}
Answer conversationally:
"""
raw_output = llm(prompt, max_new_tokens=150)[0]["generated_text"]
answer = raw_output.split("Answer conversationally:", 1)[-1].strip() if "Answer conversationally:" in raw_output else raw_output.strip()
metadata_block = ""
for _, row in top_docs.iterrows():
metadata_block += (
f"- Province: {row['province']}\n"
f" Source: {row['source_title']}\n"
f" Updated: {row['last_updated']}\n"
f" URL: {row['url']}\n"
)
return INTRO_TEXT + f"{answer}\n\nSources Used:\n{metadata_block}"
# -----------------------------
# Gradio Chat
# -----------------------------
def respond(message, history):
answer = generate_with_rag(message)
history.append((message, answer))
return history, history
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Your question")
msg.submit(respond, [msg, chatbot], [chatbot, chatbot])
gr.Markdown(
"Ask questions about Canadian tenancy and housing law.\n\n"
"**Note:** I am not a lawyer. Responses are generated from official documents."
)
if __name__ == "__main__":
demo.launch(share=True) |