File size: 4,514 Bytes
687309c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import sys
from .transformer import ViT
sys.path.append("/".join(__file__.split('/')[:-2]))
from params_model import *
from params_data import *

from collections import OrderedDict
from torch import nn
import torch

class ConvBlock(nn.Sequential):
    def __init__(self, in_channels, out_channels, kernel_size, padding=0):
        super().__init__(OrderedDict([
            ('conv', nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, bias=False)),
            ('bn', nn.BatchNorm2d(out_channels)),
            ('relu', nn.ReLU(inplace=True)),
        ]))

class SqueezeExcitation(nn.Module):
    def __init__(self, channels, ratio):
        super().__init__()

        self.pool = nn.AdaptiveAvgPool2d(1)
        # tiny nn
        self.lin1 = nn.Linear(channels, channels // ratio)
        self.relu = nn.ReLU(inplace=True)
        self.lin2 = nn.Linear(channels // ratio, 2 * channels)

    def forward(self, x):
        n, c, h, w = x.size()
        x_in = x

        x = self.pool(x).view(n, c)
        x = self.lin1(x)
        x = self.relu(x)
        x = self.lin2(x)

        x = x.view(n, 2 * c, 1, 1)
        scale, shift = x.chunk(2, dim=1)

        x = scale.sigmoid() * x_in + shift
        return x

class ResidualBlock(nn.Module):
    def __init__(self, channels, se_ratio):
        super().__init__()
        self.layers = nn.Sequential(OrderedDict([
            ('conv1', nn.Conv2d(channels, channels, 3, padding=1, bias=False)),
            ('bn1', nn.BatchNorm2d(channels)),
            ('relu', nn.ReLU(inplace=True)),

            ('conv2', nn.Conv2d(channels, channels, 3, padding=1, bias=False)),
            ('bn2', nn.BatchNorm2d(channels)),

            ('se', SqueezeExcitation(channels, se_ratio)),
        ]))
        self.relu2 = nn.ReLU(inplace=True)

    def forward(self, x):
        x_in = x

        x = self.layers(x)

        x = x + x_in
        x = self.relu2(x)
        return x

class Encoder(nn.Module):

    def __init__(self, loss_device, loss_method = "softmax"):
        super().__init__()
        self.loss_device = loss_device
        
        channels = residual_channels

        self.conv_block = ConvBlock(34, channels, 3, padding=1)
        blocks = [(f'block{i+1}', ResidualBlock(channels, se_ratio)) for i in range(residual_blocks)]
        self.residual_stack = nn.Sequential(OrderedDict(blocks))

        self.conv_block2 = ConvBlock(channels, channels, 3, padding=1)
        self.final_feature = ConvBlock(channels, vit_input_channels, 3, padding=1)
        self.global_avgpool = nn.AvgPool2d(kernel_size=8)

        self.cnn = nn.Sequential(*[
            self.conv_block,
            self.residual_stack,
            self.conv_block2,
            self.final_feature,
            self.global_avgpool,
            torch.nn.Flatten()
        ])

        self.transformer = ViT(input_dim=vit_input_channels, 
                               output_dim=model_embedding_size, 
                               dim=transformer_input_dim, 
                               depth=transformer_depth, 
                               heads=attention_heads, 
                               mlp_dim=mlp_dim, 
                               pool='mean',
                               dim_head = dim_head,
                               dropout=dropout, 
                               emb_dropout=emb_dropout)
        
        # Cosine similarity scaling (with fixed initial parameter values)
        self.similarity_weight = nn.Parameter(torch.tensor([similarity_weight_init])) 
        self.similarity_bias = nn.Parameter(torch.tensor([similarity_bias_init]))
    
    def forward(self, games):

        batch_size, n_frames, feature_shape = games.shape[0], games.shape[1], games.shape[2:]
        
        #  (batch_size, n_frames, 34, 8, 8) -> (batch_size*n_frames, 34, 8, 8)
        games = torch.reshape(games, (batch_size*n_frames, *feature_shape))

        # (batch_size*n_frames, cnn_out_features)
        game_features = self.cnn(games)

        # (batch_size*n_frames, cnn_out_features) -> (batch_size, n_frames, cnn_out_features)
        game_features = torch.reshape(game_features, (batch_size, n_frames, game_features.shape[-1]))

        # Pass the input into transformer
        # (batch_size, n_frames, n_features) 
        embeds_raw = self.transformer(game_features)
        # self.lstm.flatten_parameters()

        # L2-normalize it
        embeds = embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
        
        return embeds