File size: 10,886 Bytes
d25a262 2969053 687309c 8996c06 2969053 687309c 84efe39 687309c 1e85a38 2969053 1e85a38 2969053 1e85a38 2969053 687309c d25a262 687309c 0886557 687309c 2969053 c1aa6f5 2969053 1e85a38 56bd36c 2969053 1e85a38 2969053 1e85a38 2969053 7f16368 84efe39 7f16368 84efe39 7f16368 5bb286b b77b874 bf6327e c3c37c2 7f16368 900e0b3 76ee036 2969053 7f16368 047b139 fd2e175 900e0b3 7f16368 76ee036 900e0b3 b77b874 7f16368 5e75f12 76ee036 1e85a38 d713b10 b77b874 7f16368 2969053 687309c 5869c79 7f16368 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import os
import io
import torch
import requests
import chess.pgn
import numpy as np
from data_objects.game import Game
from encoder.model import Encoder
def generate_alternative_pgns(game):
if not game:
print("couldn't read game")
return [], None, None
# Set up board and get moves
board = game.board()
moves = list(game.mainline_moves())
# Play through the moves up to just before our target
for move in moves:
board.push(move)
# Get all legal moves from this position
legal_moves = list(board.legal_moves)
# Create a new PGN for each legal move
result_pgns = []
move_sans = []
for legal_move in legal_moves:
# Create a copy of the game up to the target position
new_game = chess.pgn.Game()
# Copy headers
for key in game.headers:
new_game.headers[key] = game.headers[key]
# Mark game as unfinished
if "Result" in new_game.headers:
new_game.headers["Result"] = "*"
# Create the move sequence
node = new_game
for move in moves:
node = node.add_variation(move)
# Add our alternative move
node = node.add_variation(legal_move)
# Convert to PGN string
new_pgn = io.StringIO()
exporter = chess.pgn.FileExporter(new_pgn)
new_game.accept(exporter)
# Save the PGN and the SAN notation of this move
result_pgns.append(new_pgn.getvalue())
move_sans.append(board.san(legal_move))
return result_pgns, move_sans
def process_game(game, prediction_mode = False):
def create_position_planes(board: chess.Board, positions_seen: set, cur_player: chess.Color) -> np.ndarray:
def bb_to_plane(bb: int, player: chess.Color) -> np.ndarray:
binary = format(bb, '064b')
h_flipped = np.fliplr(np.array([int(binary[i]) for i in range(64)], dtype=np.float32).reshape(8, 8))
if player:
return h_flipped
else:
return np.flip(h_flipped)
planes = np.zeros((13, 8, 8), dtype=np.float32)
piece_types = [chess.PAWN, chess.KNIGHT, chess.BISHOP, chess.ROOK, chess.QUEEN, chess.KING]
# white pieces (planes 1-6)
for i, piece_type in enumerate(piece_types):
bb = board.pieces_mask(piece_type, chess.WHITE)
planes[i] = bb_to_plane(bb, cur_player)
# black pieces (planes 7-12)
for i, piece_type in enumerate(piece_types):
bb = board.pieces_mask(piece_type, chess.BLACK)
planes[i + 6] = bb_to_plane(bb, cur_player)
# repetition plane (plane 13)
current_position = board.fen().split(' ')[0]
if list(positions_seen).count(current_position) > 1:
planes[12] = 1.0
return planes
board = chess.Board()
positions_seen = set()
positions_seen.add(board.fen().split(' ')[0])
white_moves = []
black_moves = []
node = game
while node.next():
node = node.next()
move = node.move
assert(move is not None)
cur_player = board.turn
current_planes = create_position_planes(board, positions_seen, cur_player)
board.push(move)
positions_seen.add(board.fen().split(' ')[0])
next_planes = create_position_planes(board, positions_seen, cur_player)
assert(not (current_planes==next_planes).all())
# print_planes(next_planes)
move_planes = np.zeros((34, 8, 8), dtype=np.float32)
# first 13 planes (before move)
move_planes[0:13] = current_planes
# next 13 planes (after move)
move_planes[13:26] = next_planes
# castling availability (planes 27-30)
move_planes[26] = float(board.has_queenside_castling_rights(chess.WHITE))
move_planes[27] = float(board.has_kingside_castling_rights(chess.WHITE))
move_planes[28] = float(board.has_queenside_castling_rights(chess.BLACK))
move_planes[29] = float(board.has_kingside_castling_rights(chess.BLACK))
# side to move (plane 31)
move_planes[30] = 1 if board.turn is chess.WHITE else 0
# fifty move counter (plane 32)
move_planes[31] = board.halfmove_clock / 100.0
# move time normalized between 0 and 1 (plane 33)
# change based on time control
clock_info = node.comment.strip('{}[] ').split()[1] if node.comment else "0:00:30"
try:
minutes, seconds = map(int, clock_info.split(':')[1:])
total_seconds = minutes * 60 + seconds
move_planes[32] = min(1.0, total_seconds / 180.0)
except:
move_planes[32] = 0.5
# all 1s (plane 34)
move_planes[33] = 1.0
if board.turn:
black_moves.append(move_planes)
else: # chess.BLACK is falsy
white_moves.append(move_planes)
if (not prediction_mode) and (len(white_moves) < 10 or len(black_moves) < 10):
return None
white_array = np.stack(white_moves, axis=0)
black_array = [] if not black_moves else np.stack(black_moves, axis=0)
return white_array, black_array
class EndpointHandler():
def __init__(self, model_dir):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = torch.load(os.path.join(model_dir, "6_3.pt"), self.device, weights_only=True)
self.model = Encoder(self.device)
state_dict = checkpoint['model_state']
self.model.load_state_dict(state_dict)
self.model = self.model.to(self.device)
self.model.eval()
self.d = {
0: self.say_hi,
1: self.create_user_embedding,
2: self.ai_move
}
def say_hi(self, _data):
print('entering test endpoint')
print('exiting test endpoint')
return {"reply": "hello from inference api!!"}
def create_user_embedding(self, data):
print('entering create_username endpoint')
username = data["username"]
pgn_content = data["pgn_content"]
games_per_player = data["games_per_player"]
l = []
while True:
game = chess.pgn.read_game(io.StringIO(pgn_content))
if game is None:
print("breaking main loop")
break
white = game.headers.get("White")
black = game.headers.get("Black")
if white == username:
color = "white"
elif black == username:
color = "black"
else:
raise Exception
try:
arrs = process_game(game)
except:
print("skipped")
continue
if arrs is None: # skip if less than 10 moves
print("skipped")
continue
if color == "white":
l.append(arrs[0])
else:
l.append(arrs[1])
if not l: return None
inputs = np.array([Game(g).random_partial() for g in l[:games_per_player]])
num_games = min(len(l), games_per_player)
tensor = torch.tensor(inputs).float().to(self.device)
with torch.no_grad():
embeds = self.model(tensor)
embeds = embeds.view((1, num_games, -1)).to(self.device)
centroids_incl = torch.mean(embeds, dim=1, keepdim=True)
centroids_incl = centroids_incl.clone() / torch.norm(centroids_incl, dim=2, keepdim=True)
centroids_incl = centroids_incl.cpu().squeeze(1)
final_embeds = centroids_incl[0].numpy().tolist()
print('exiting create_username endpoint')
return {"reply": final_embeds}
def ai_move(self, data):
print('entering ai_move endpoint')
pgn_string = data["pgn_string"]
color = data["color"]
player_centroid = data["player_centroid"]
game = chess.pgn.read_game(io.StringIO(pgn_string))
alternative_pgns, move_sans = generate_alternative_pgns(game)
game = chess.pgn.read_game(io.StringIO(pgn_string))
inputs = []
for alt_pgn in alternative_pgns:
game_tensors = process_game(chess.pgn.read_game(io.StringIO(alt_pgn)), True)
game_tensor = game_tensors[0] if color == "white" else game_tensors[1]
inputs.append(game_tensor)
tensor = torch.tensor(np.array(inputs)).float().to(self.device)
with torch.no_grad():
embed = self.model(tensor)
embed = embed / torch.norm(embed)
arr = embed.cpu().numpy()
similarities = [np.dot(np.array(player_centroid), embed) for embed in arr]
result = move_sans[np.argmax(similarities)]
ordered_moves = np.argsort(similarities).tolist()[::-1]
try:
board = game.board()
moves = list(game.mainline_moves())
for move in moves:
board.push(move)
response = requests.post("http://13.49.80.182/stockfish_eval", json={"fen": board.fen()})
if response.status_code == 400:
print(response.text)
print('exiting ai_move endpoint status code before move')
return {"reply": result}
best_eval = response.json()["value"]
best_move = response.json()["best"]
best_move = chess.Move.from_uci(best_move)
best_move = board.san(best_move)
for move in ordered_moves:
test_board = board.copy()
test_board.push(board.parse_san(move_sans[move]))
response = requests.post("http://13.49.80.182/stockfish_eval", json={"fen": test_board.fen()})
if response.status_code == 500:
print('exiting ai_move endpoint status code after move')
return {"reply": best_move}
eval = response.json()["value"]
if (color == "white" and (best_eval - eval < 120)) or (color == "black" and (best_eval - eval > -120)):
print('exiting ai_move endpoint nice found!')
return {"reply": move_sans[move]}
print('exiting ai_move endpoint all moves are shit!')
return {"reply": best_move}
except Exception as e:
print('error sending to lichess', e)
print('exiting ai_move endpoint due to exception')
return {"reply": result}
def __call__(self, data):
data = data.get("inputs", data)
return self.d[data["endpoint_num"]](data) |