|
|
|
import numpy as np |
|
import torch |
|
from torch import nn, einsum |
|
import torch.nn.functional as F |
|
|
|
|
|
from einops import rearrange |
|
|
|
class PreNorm(nn.Module): |
|
def __init__(self, dim, fn): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(dim) |
|
self.fn = fn |
|
def forward(self, x): |
|
return self.fn(self.norm(x)) |
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, hidden_dim, dropout = 0.): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(dim, hidden_dim), |
|
nn.GELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(hidden_dim, dim), |
|
nn.Dropout(dropout) |
|
) |
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
project_out = not (heads == 1 and dim_head == dim) |
|
|
|
self.heads = heads |
|
self.scale = dim_head ** -0.5 |
|
|
|
self.attend = nn.Softmax(dim = -1) |
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, dim), |
|
nn.Dropout(dropout) |
|
) if project_out else nn.Identity() |
|
|
|
def forward(self, x): |
|
b, n, _, h = *x.shape, self.heads |
|
qkv = self.to_qkv(x).chunk(3, dim = -1) |
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) |
|
|
|
|
|
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale |
|
|
|
attn = self.attend(dots) |
|
|
|
out = einsum('b h i j, b h j d -> b h i d', attn, v) |
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
return self.to_out(out) |
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.): |
|
super().__init__() |
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append(nn.ModuleList([ |
|
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), |
|
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) |
|
])) |
|
def forward(self, x): |
|
for attn, ff in self.layers: |
|
x = attn(x) + x |
|
x = ff(x) + x |
|
return x |
|
|
|
class PositionalEncoding(nn.Module): |
|
|
|
def __init__(self, d_model, max_len=500): |
|
super().__init__() |
|
|
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
|
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
|
|
|
|
x = x + self.pe[:, :x.size(1), :] |
|
return x |
|
|
|
class ViT(nn.Module): |
|
""" |
|
input_size: number of inputs |
|
input_dim: number of channels in input |
|
dim: Last dimension of output tensor after linear transformation nn.Linear(..., dim). |
|
depth: Number of Transformer blocks. |
|
heads: Number of heads in Multi-head Attention layer. |
|
mlp_dim: Dimension of the MLP (FeedForward) layer. |
|
dropout: Dropout rate. |
|
emb_dropout: Embedding dropout rate. |
|
pool: either cls token pooling or mean pooling |
|
""" |
|
|
|
def __init__(self, *, input_dim, output_dim, dim, depth, heads, mlp_dim, pool = 'mean', dim_head = 64, dropout, emb_dropout): |
|
super().__init__() |
|
|
|
self.project = nn.Linear(input_dim, dim) |
|
|
|
self.pos_encoder = PositionalEncoding(dim) |
|
|
|
self.dropout = nn.Dropout(emb_dropout) |
|
|
|
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) |
|
|
|
self.pool = pool |
|
|
|
self.mlp_head = nn.Sequential( |
|
nn.LayerNorm(dim), |
|
nn.Linear(dim, output_dim) |
|
) |
|
|
|
self.tanh = torch.nn.Tanh() |
|
|
|
def forward(self, x): |
|
|
|
x = self.project(x) |
|
b, n, _ = x.shape |
|
|
|
x = self.pos_encoder(x) |
|
|
|
x = self.dropout(x) |
|
|
|
x = self.transformer(x) |
|
|
|
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] |
|
|
|
return self.tanh(self.mlp_head(x)) |