Upload 5 files
Browse filesuploading weigths
- evaluate.py +150 -0
- model.safetensors +3 -0
- preprocessor_config.json +27 -0
- requirements.txt +35 -0
- train_clip.py +232 -0
evaluate.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from sklearn.metrics import classification_report, accuracy_score
|
5 |
+
from transformers import CLIPImageProcessor
|
6 |
+
import os
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
# IMPORTANT: This line imports your custom model class from the training script.
|
10 |
+
# Ensure 'train_clip.py' is in the same directory.
|
11 |
+
from train_clip import MultiTaskClipVisionModel
|
12 |
+
|
13 |
+
# --- 1. Configuration ---
|
14 |
+
# Verify this path is correct. It should point to the directory where the
|
15 |
+
# 'pytorch_model.bin' and 'preprocessor_config.json' files for your best model are located.
|
16 |
+
MODEL_PATH = "./clip-fairface-finetuned/best_model" # Or "./clip-fairface-finetuned/checkpoint-XXXX"
|
17 |
+
|
18 |
+
VAL_CSV = './fairface_label_val.csv'
|
19 |
+
BASE_PATH = './'
|
20 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
|
22 |
+
print(f"Using device: {DEVICE}")
|
23 |
+
print(f"Loading model from: {MODEL_PATH}")
|
24 |
+
|
25 |
+
# --- 2. Load Label Mappings (must be identical to training) ---
|
26 |
+
# We load the TRAIN csv to ensure the label mappings are consistent with what the model was trained on.
|
27 |
+
train_df = pd.read_csv('./fairface_label_train.csv')
|
28 |
+
age_labels = sorted(train_df['age'].unique())
|
29 |
+
gender_labels = sorted(train_df['gender'].unique())
|
30 |
+
race_labels = sorted(train_df['race'].unique())
|
31 |
+
|
32 |
+
label_mappings = {
|
33 |
+
'age': {label: i for i, label in enumerate(age_labels)},
|
34 |
+
'gender': {label: i for i, label in enumerate(gender_labels)},
|
35 |
+
'race': {label: i for i, label in enumerate(race_labels)},
|
36 |
+
}
|
37 |
+
|
38 |
+
# Create reverse mappings from ID back to human-readable label
|
39 |
+
id_mappings = {
|
40 |
+
'age': {i: label for label, i in label_mappings['age'].items()},
|
41 |
+
'gender': {i: label for label, i in label_mappings['gender'].items()},
|
42 |
+
'race': {i: label for label, i in label_mappings['race'].items()},
|
43 |
+
}
|
44 |
+
|
45 |
+
NUM_LABELS = {
|
46 |
+
'age': len(age_labels),
|
47 |
+
'gender': len(gender_labels),
|
48 |
+
'race': len(race_labels),
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
# --- 3. Load Model and Processor ---
|
53 |
+
print("Loading processor and model...")
|
54 |
+
processor = CLIPImageProcessor.from_pretrained(MODEL_PATH)
|
55 |
+
model = MultiTaskClipVisionModel(num_labels=NUM_LABELS)
|
56 |
+
|
57 |
+
# Load the saved model weights. `map_location` ensures it works even if you trained on GPU and now use CPU.
|
58 |
+
model.load_state_dict(torch.load(os.path.join(MODEL_PATH, 'pytorch_model.bin'), map_location=torch.device(DEVICE)))
|
59 |
+
model.to(DEVICE)
|
60 |
+
model.eval() # Set the model to evaluation mode
|
61 |
+
print("Model loaded successfully.")
|
62 |
+
|
63 |
+
|
64 |
+
# --- 4. Evaluation on Validation Set ---
|
65 |
+
def evaluate_on_dataset():
|
66 |
+
print(f"\nEvaluating on validation data from: {VAL_CSV}")
|
67 |
+
val_df = pd.read_csv(VAL_CSV)
|
68 |
+
|
69 |
+
# Lists to store all predictions and true labels
|
70 |
+
all_preds = {'age': [], 'gender': [], 'race': []}
|
71 |
+
all_true = {'age': [], 'gender': [], 'race': []}
|
72 |
+
|
73 |
+
# Disable gradient calculations for efficiency
|
74 |
+
with torch.no_grad():
|
75 |
+
# Use tqdm for a nice progress bar
|
76 |
+
for index, row in tqdm(val_df.iterrows(), total=val_df.shape[0], desc="Evaluating"):
|
77 |
+
image_path = os.path.join(BASE_PATH, row['file'])
|
78 |
+
image = Image.open(image_path).convert("RGB")
|
79 |
+
|
80 |
+
# Process the image and move to the correct device
|
81 |
+
inputs = processor(images=image, return_tensors="pt").to(DEVICE)
|
82 |
+
|
83 |
+
# Get model predictions
|
84 |
+
outputs = model(pixel_values=inputs['pixel_values'])
|
85 |
+
logits = outputs['logits']
|
86 |
+
|
87 |
+
# Process predictions for each task
|
88 |
+
for task in ['age', 'gender', 'race']:
|
89 |
+
pred_id = torch.argmax(logits[task], dim=-1).item()
|
90 |
+
true_label = row[task]
|
91 |
+
true_id = label_mappings[task][true_label]
|
92 |
+
|
93 |
+
all_preds[task].append(pred_id)
|
94 |
+
all_true[task].append(true_id)
|
95 |
+
|
96 |
+
# --- Print Reports ---
|
97 |
+
print("\n--- Evaluation Results ---")
|
98 |
+
for task in ['age', 'gender', 'race']:
|
99 |
+
task_preds = all_preds[task]
|
100 |
+
task_true = all_true[task]
|
101 |
+
task_labels = list(label_mappings[task].keys())
|
102 |
+
task_target_names = [id_mappings[task][i] for i in range(len(task_labels))]
|
103 |
+
|
104 |
+
accuracy = accuracy_score(task_true, task_preds)
|
105 |
+
report = classification_report(
|
106 |
+
task_true,
|
107 |
+
task_preds,
|
108 |
+
target_names=task_target_names,
|
109 |
+
zero_division=0
|
110 |
+
)
|
111 |
+
|
112 |
+
print(f"\n--- {task.upper()} CLASSIFICATION REPORT ---")
|
113 |
+
print(f"Overall Accuracy: {accuracy:.4f}")
|
114 |
+
print(report)
|
115 |
+
|
116 |
+
|
117 |
+
# --- 5. Function for Single Image Prediction ---
|
118 |
+
def predict_single_image(image_path):
|
119 |
+
print(f"\n--- Predicting for single image: {image_path} ---")
|
120 |
+
if not os.path.exists(image_path):
|
121 |
+
print(f"Error: Image path not found at '{image_path}'")
|
122 |
+
return
|
123 |
+
|
124 |
+
image = Image.open(image_path).convert("RGB")
|
125 |
+
inputs = processor(images=image, return_tensors="pt").to(DEVICE)
|
126 |
+
|
127 |
+
with torch.no_grad():
|
128 |
+
outputs = model(pixel_values=inputs['pixel_values'])
|
129 |
+
logits = outputs['logits']
|
130 |
+
|
131 |
+
predictions = {}
|
132 |
+
for task in ['age', 'gender', 'race']:
|
133 |
+
pred_id = torch.argmax(logits[task], dim=-1).item()
|
134 |
+
pred_label = id_mappings[task][pred_id]
|
135 |
+
predictions[task] = pred_label
|
136 |
+
|
137 |
+
print("Predictions:")
|
138 |
+
for task, label in predictions.items():
|
139 |
+
print(f" - {task.capitalize()}: {label}")
|
140 |
+
return predictions
|
141 |
+
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
# Run the full evaluation on the validation dataset
|
145 |
+
evaluate_on_dataset()
|
146 |
+
|
147 |
+
# --- Example of single image prediction ---
|
148 |
+
# IMPORTANT: Change this path to an image you want to test
|
149 |
+
sample_image_path = 'val/1.jpg'
|
150 |
+
predict_single_image(sample_image_path)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e811883e6f247acc61a869a938b9523d1eb1d34fa3c1e882b3f033a49b8cb72d
|
3 |
+
size 1212846240
|
preprocessor_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_processor_type": "CLIPImageProcessor",
|
17 |
+
"image_std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
],
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"shortest_edge": 224
|
26 |
+
}
|
27 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file lists the required packages for the clip-face-attribute-classifier project.
|
2 |
+
# Install them using: pip install -r requirements.txt
|
3 |
+
|
4 |
+
# --- Hugging Face Libraries ---
|
5 |
+
# Core library for models, Trainer, TrainingArguments, and processors
|
6 |
+
transformers==4.38.2
|
7 |
+
# Used for data handling and creating Dataset objects
|
8 |
+
datasets==2.18.0
|
9 |
+
# For efficient training and hardware acceleration with the Trainer
|
10 |
+
accelerate==0.27.2
|
11 |
+
# For interacting with the Hugging Face Hub (login, upload, etc.)
|
12 |
+
huggingface_hub==0.21.4
|
13 |
+
|
14 |
+
|
15 |
+
# --- Core Deep Learning Framework ---
|
16 |
+
# The fundamental deep learning library
|
17 |
+
torch==2.2.1
|
18 |
+
# Companion library for computer vision tasks in PyTorch
|
19 |
+
torchvision==0.17.1
|
20 |
+
|
21 |
+
|
22 |
+
# --- Data Handling and Metrics ---
|
23 |
+
# For reading and manipulating the .csv label files
|
24 |
+
pandas==2.2.1
|
25 |
+
# For calculating evaluation metrics like accuracy, precision, recall, and F1-score
|
26 |
+
scikit-learn==1.4.1.post1
|
27 |
+
|
28 |
+
|
29 |
+
# --- Utilities ---
|
30 |
+
# For opening and handling image files
|
31 |
+
Pillow==10.2.0
|
32 |
+
# For creating progress bars during evaluation
|
33 |
+
tqdm==4.66.2
|
34 |
+
# For loading the safer .safetensors model format
|
35 |
+
safetensors==0.4.2
|
train_clip.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from PIL import Image
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
from transformers import (
|
7 |
+
Trainer,
|
8 |
+
TrainingArguments,
|
9 |
+
CLIPVisionModel,
|
10 |
+
CLIPImageProcessor,
|
11 |
+
)
|
12 |
+
from torch.utils.data import Dataset
|
13 |
+
import os
|
14 |
+
os.environ["WANDB_DISABLED"] = "true"
|
15 |
+
# --- 1. Configuration ---
|
16 |
+
# Define paths and model name
|
17 |
+
BASE_PATH = './' # Assumes the script is run from the 'fairface' directory
|
18 |
+
TRAIN_CSV = os.path.join(BASE_PATH, 'fairface_label_train.csv')
|
19 |
+
VAL_CSV = os.path.join(BASE_PATH, 'fairface_label_val.csv')
|
20 |
+
MODEL_NAME = "openai/clip-vit-large-patch14"
|
21 |
+
OUTPUT_DIR = "./clip-fairface-finetuned"
|
22 |
+
|
23 |
+
# --- 2. Load and Prepare Label Mappings ---
|
24 |
+
# Load training data to create consistent label-to-ID mappings
|
25 |
+
train_df = pd.read_csv(TRAIN_CSV)
|
26 |
+
|
27 |
+
# Create sorted unique label lists to ensure consistent mapping
|
28 |
+
age_labels = sorted(train_df['age'].unique())
|
29 |
+
gender_labels = sorted(train_df['gender'].unique())
|
30 |
+
race_labels = sorted(train_df['race'].unique())
|
31 |
+
|
32 |
+
# Create label-to-ID mappings for each task
|
33 |
+
label_mappings = {
|
34 |
+
'age': {label: i for i, label in enumerate(age_labels)},
|
35 |
+
'gender': {label: i for i, label in enumerate(gender_labels)},
|
36 |
+
'race': {label: i for i, label in enumerate(race_labels)},
|
37 |
+
}
|
38 |
+
|
39 |
+
NUM_LABELS = {
|
40 |
+
'age': len(age_labels),
|
41 |
+
'gender': len(gender_labels),
|
42 |
+
'race': len(race_labels),
|
43 |
+
}
|
44 |
+
|
45 |
+
print(f"Number of labels: Age={NUM_LABELS['age']}, Gender={NUM_LABELS['gender']}, Race={NUM_LABELS['race']}")
|
46 |
+
|
47 |
+
# --- 3. Custom Dataset ---
|
48 |
+
class FairFaceDataset(Dataset):
|
49 |
+
def __init__(self, csv_file, image_processor, label_maps, base_path):
|
50 |
+
self.df = pd.read_csv(csv_file)
|
51 |
+
self.image_processor = image_processor
|
52 |
+
self.label_maps = label_maps
|
53 |
+
self.base_path = base_path
|
54 |
+
|
55 |
+
def __len__(self):
|
56 |
+
return len(self.df)
|
57 |
+
|
58 |
+
def __getitem__(self, idx):
|
59 |
+
row = self.df.iloc[idx]
|
60 |
+
# Construct the full path to the image
|
61 |
+
image_path = os.path.join(self.base_path, row['file'])
|
62 |
+
image = Image.open(image_path).convert("RGB")
|
63 |
+
|
64 |
+
# Process the image
|
65 |
+
inputs = {}
|
66 |
+
inputs['pixel_values'] = self.image_processor(images=image, return_tensors="pt").pixel_values.squeeze(0)
|
67 |
+
|
68 |
+
# Process labels into a dictionary of tensors
|
69 |
+
inputs['labels'] = {
|
70 |
+
'age': torch.tensor(self.label_maps['age'][row['age']], dtype=torch.long),
|
71 |
+
'gender': torch.tensor(self.label_maps['gender'][row['gender']], dtype=torch.long),
|
72 |
+
'race': torch.tensor(self.label_maps['race'][row['race']], dtype=torch.long),
|
73 |
+
}
|
74 |
+
return inputs
|
75 |
+
|
76 |
+
# --- 4. Custom Model Definition ---
|
77 |
+
# --- 4. Custom Model Definition (Corrected for Gradient Checkpointing) ---
|
78 |
+
class MultiTaskClipVisionModel(nn.Module):
|
79 |
+
# Add this class attribute to signal to the Trainer that we support this
|
80 |
+
supports_gradient_checkpointing = True
|
81 |
+
|
82 |
+
def __init__(self, num_labels):
|
83 |
+
super(MultiTaskClipVisionModel, self).__init__()
|
84 |
+
self.vision_model = CLIPVisionModel.from_pretrained(MODEL_NAME)
|
85 |
+
|
86 |
+
# Freeze all parameters of the vision model first
|
87 |
+
for param in self.vision_model.parameters():
|
88 |
+
param.requires_grad = False
|
89 |
+
|
90 |
+
# Unfreeze the last few layers for fine-tuning.
|
91 |
+
for layer in self.vision_model.vision_model.encoder.layers[-3:]: # Unfreeze last 3 transformer layers
|
92 |
+
for param in layer.parameters():
|
93 |
+
param.requires_grad = True
|
94 |
+
|
95 |
+
# Define classification heads for each task
|
96 |
+
hidden_size = self.vision_model.config.hidden_size
|
97 |
+
self.age_head = nn.Linear(hidden_size, num_labels['age'])
|
98 |
+
self.gender_head = nn.Linear(hidden_size, num_labels['gender'])
|
99 |
+
self.race_head = nn.Linear(hidden_size, num_labels['race'])
|
100 |
+
|
101 |
+
# ADD THIS METHOD: This will be called by the Trainer
|
102 |
+
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
|
103 |
+
"""Activates gradient checkpointing for the underlying vision model."""
|
104 |
+
self.vision_model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
|
105 |
+
|
106 |
+
def forward(self, pixel_values, labels=None):
|
107 |
+
# The forward pass now works seamlessly with gradient checkpointing enabled
|
108 |
+
outputs = self.vision_model(pixel_values=pixel_values)
|
109 |
+
pooled_output = outputs.pooler_output
|
110 |
+
|
111 |
+
age_logits = self.age_head(pooled_output)
|
112 |
+
gender_logits = self.gender_head(pooled_output)
|
113 |
+
race_logits = self.race_head(pooled_output)
|
114 |
+
|
115 |
+
loss = None
|
116 |
+
# If labels are provided, calculate the combined loss
|
117 |
+
if labels is not None:
|
118 |
+
loss_fct = nn.CrossEntropyLoss()
|
119 |
+
age_loss = loss_fct(age_logits, labels['age'])
|
120 |
+
gender_loss = loss_fct(gender_logits, labels['gender'])
|
121 |
+
race_loss = loss_fct(race_logits, labels['race'])
|
122 |
+
# Total loss is the sum of individual task losses
|
123 |
+
loss = age_loss + gender_loss + race_loss
|
124 |
+
|
125 |
+
return {
|
126 |
+
'loss': loss,
|
127 |
+
'logits': {
|
128 |
+
'age': age_logits,
|
129 |
+
'gender': gender_logits,
|
130 |
+
'race': race_logits,
|
131 |
+
},
|
132 |
+
}
|
133 |
+
|
134 |
+
# --- 5. Data Collator and Metrics ---
|
135 |
+
def collate_fn(batch):
|
136 |
+
# Stacks pixel values and organizes labels into a dictionary of tensors
|
137 |
+
pixel_values = torch.stack([item['pixel_values'] for item in batch])
|
138 |
+
labels = {
|
139 |
+
'age': torch.tensor([item['labels']['age'] for item in batch], dtype=torch.long),
|
140 |
+
'gender': torch.tensor([item['labels']['gender'] for item in batch], dtype=torch.long),
|
141 |
+
'race': torch.tensor([item['labels']['race'] for item in batch], dtype=torch.long),
|
142 |
+
}
|
143 |
+
return {'pixel_values': pixel_values, 'labels': labels}
|
144 |
+
|
145 |
+
def compute_metrics(p):
|
146 |
+
# p is an EvalPrediction object containing predictions and label_ids
|
147 |
+
logits = p.predictions
|
148 |
+
labels = p.label_ids
|
149 |
+
|
150 |
+
# Extract predictions and labels for each task
|
151 |
+
age_preds = logits['age'].argmax(-1)
|
152 |
+
gender_preds = logits['gender'].argmax(-1)
|
153 |
+
race_preds = logits['race'].argmax(-1)
|
154 |
+
|
155 |
+
age_labels = labels['age']
|
156 |
+
gender_labels = labels['gender']
|
157 |
+
race_labels = labels['race']
|
158 |
+
|
159 |
+
# Calculate accuracy for each task
|
160 |
+
return {
|
161 |
+
'age_accuracy': accuracy_score(age_labels, age_preds),
|
162 |
+
'gender_accuracy': accuracy_score(gender_labels, gender_preds),
|
163 |
+
'race_accuracy': accuracy_score(race_labels, race_preds),
|
164 |
+
}
|
165 |
+
|
166 |
+
# --- 6. Trainer Setup and Execution ---
|
167 |
+
def main():
|
168 |
+
# Initialize the image processor and our custom model
|
169 |
+
image_processor = CLIPImageProcessor.from_pretrained(MODEL_NAME)
|
170 |
+
model = MultiTaskClipVisionModel(num_labels=NUM_LABELS)
|
171 |
+
|
172 |
+
# Initialize the training and validation datasets
|
173 |
+
train_dataset = FairFaceDataset(
|
174 |
+
csv_file=TRAIN_CSV, image_processor=image_processor, label_maps=label_mappings, base_path=BASE_PATH
|
175 |
+
)
|
176 |
+
val_dataset = FairFaceDataset(
|
177 |
+
csv_file=VAL_CSV, image_processor=image_processor, label_maps=label_mappings, base_path=BASE_PATH
|
178 |
+
)
|
179 |
+
|
180 |
+
# Define the training arguments
|
181 |
+
# In your main() function, replace the old TrainingArguments with this one
|
182 |
+
|
183 |
+
# Define the training arguments
|
184 |
+
training_args = TrainingArguments(
|
185 |
+
output_dir=OUTPUT_DIR,
|
186 |
+
num_train_epochs=5,
|
187 |
+
# Set a batch size that fits in memory
|
188 |
+
per_device_train_batch_size=24,
|
189 |
+
per_device_eval_batch_size=32, # Evaluation does not need accumulation and can use a larger batch size
|
190 |
+
# Set accumulation steps to reach the desired effective batch size (24 * 22 = 528)
|
191 |
+
gradient_accumulation_steps=22,
|
192 |
+
# Enable gradient checkpointing to save more memory
|
193 |
+
gradient_checkpointing=True,
|
194 |
+
warmup_steps=500,
|
195 |
+
weight_decay=0.01,
|
196 |
+
logging_dir='./logs',
|
197 |
+
logging_steps=10, # Log more frequently to see progress within a large effective batch
|
198 |
+
evaluation_strategy="steps",
|
199 |
+
eval_steps=250, # You might want to evaluate less frequently with larger batches
|
200 |
+
save_strategy="steps",
|
201 |
+
save_steps=250,
|
202 |
+
load_best_model_at_end=True,
|
203 |
+
metric_for_best_model='gender_accuracy',
|
204 |
+
save_total_limit=3,
|
205 |
+
fp16=True, # Mixed-precision training is essential for large models
|
206 |
+
remove_unused_columns=False,
|
207 |
+
report_to="none", # Disables wandb logging
|
208 |
+
)
|
209 |
+
|
210 |
+
# Initialize the Trainer
|
211 |
+
trainer = Trainer(
|
212 |
+
model=model,
|
213 |
+
args=training_args,
|
214 |
+
train_dataset=train_dataset,
|
215 |
+
eval_dataset=val_dataset,
|
216 |
+
data_collator=collate_fn,
|
217 |
+
compute_metrics=compute_metrics,
|
218 |
+
)
|
219 |
+
|
220 |
+
# Start training
|
221 |
+
print("Starting model training...")
|
222 |
+
trainer.train()
|
223 |
+
|
224 |
+
# Save the final model and processor
|
225 |
+
print("Saving the best model...")
|
226 |
+
trainer.save_model(os.path.join(OUTPUT_DIR, "best_model"))
|
227 |
+
image_processor.save_pretrained(os.path.join(OUTPUT_DIR, "best_model"))
|
228 |
+
|
229 |
+
print("Training complete!")
|
230 |
+
|
231 |
+
if __name__ == "__main__":
|
232 |
+
main()
|