--- library_name: transformers base_model: syssec-utd/py310-pylingual-v1-mlm tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: py310-pylingual-v1-segmenter results: [] --- # py310-pylingual-v1-segmenter This model is a fine-tuned version of [syssec-utd/py310-pylingual-v1-mlm](https://huggingface.co/syssec-utd/py310-pylingual-v1-mlm) on the syssec-utd/segmentation-py310-pylingual-v1-tokenized dataset. It achieves the following results on the evaluation set: - Loss: 0.0069 - Precision: 0.9931 - Recall: 0.9901 - F1: 0.9916 - Accuracy: 0.9977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0052 | 1.0 | 192889 | 0.0072 | 0.9923 | 0.9885 | 0.9904 | 0.9973 | | 0.0032 | 2.0 | 385778 | 0.0069 | 0.9931 | 0.9901 | 0.9916 | 0.9977 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.21.0