--- library_name: transformers base_model: syssec-utd/py313-pylingual-v1.3-mlm tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: py313-pylingual-v1.3-segmenter results: [] --- # py313-pylingual-v1.3-segmenter This model is a fine-tuned version of [syssec-utd/py313-pylingual-v1.3-mlm](https://huggingface.co/syssec-utd/py313-pylingual-v1.3-mlm) on the syssec-utd/segmentation-py313-pylingual-v2-tokenized dataset. It achieves the following results on the evaluation set: - Loss: 0.0007 - Precision: 0.9985 - Recall: 0.9980 - F1: 0.9982 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 144 - total_eval_batch_size: 24 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0079 | 1.0 | 32225 | 0.0008 | 0.9988 | 0.9985 | 0.9987 | 0.9997 | | 0.0043 | 2.0 | 64450 | 0.0007 | 0.9985 | 0.9980 | 0.9982 | 0.9996 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu128 - Datasets 3.3.2 - Tokenizers 0.21.4