--- library_name: transformers base_model: syssec-utd/py36-pylingual-v1-mlm tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: py36-pylingual-v1-segmenter results: [] --- # py36-pylingual-v1-segmenter This model is a fine-tuned version of [syssec-utd/py36-pylingual-v1-mlm](https://huggingface.co/syssec-utd/py36-pylingual-v1-mlm) on the syssec-utd/segmentation-py36-pylingual-v1-tokenized dataset. It achieves the following results on the evaluation set: - Loss: 0.0006 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.0051 | 1.0 | 90840 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0029 | 2.0 | 181680 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.21.0