--- library_name: transformers base_model: syssec-utd/py38-pylingual-v1.1.1-mlm tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: py38-pylingual-v1.1.1-segmenter results: [] --- # py38-pylingual-v1.1.1-segmenter This model is a fine-tuned version of [syssec-utd/py38-pylingual-v1.1.1-mlm](https://huggingface.co/syssec-utd/py38-pylingual-v1.1.1-mlm) on the syssec-utd/segmentation-py38-pylingual-v1.1-tokenized dataset. It achieves the following results on the evaluation set: - Loss: 0.0811 - Precision: 0.9316 - Recall: 0.8862 - F1: 0.9083 - Accuracy: 0.9617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 144 - total_eval_batch_size: 24 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2656 | 1.0 | 1490 | 0.1329 | 0.8099 | 0.7967 | 0.8033 | 0.9387 | | 0.1195 | 2.0 | 2980 | 0.0811 | 0.9316 | 0.8862 | 0.9083 | 0.9617 | ### Framework versions - Transformers 4.54.1 - Pytorch 2.8.0+cu128 - Datasets 3.3.2 - Tokenizers 0.21.4