--- library_name: transformers base_model: syssec-utd/py39-pylingual-v1-mlm tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: py39-pylingual-v1-segmenter results: [] --- # py39-pylingual-v1-segmenter This model is a fine-tuned version of [syssec-utd/py39-pylingual-v1-mlm](https://huggingface.co/syssec-utd/py39-pylingual-v1-mlm) on the syssec-utd/segmentation-py39-pylingual-v1-tokenized dataset. It achieves the following results on the evaluation set: - Loss: 0.0087 - Precision: 0.9912 - Recall: 0.9828 - F1: 0.9869 - Accuracy: 0.9952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0057 | 1.0 | 102151 | 0.0097 | 0.9899 | 0.9831 | 0.9865 | 0.9953 | | 0.0033 | 2.0 | 204302 | 0.0087 | 0.9912 | 0.9828 | 0.9869 | 0.9952 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.21.0