--- language: en license: apache-2.0 library_name: peft tags: - paligemma - visual-question-answering - vqa - clevr - qlora - multimodal - peft base_model: google/paligemma-3b-pt-224 datasets: - leonardPKU/clevr_cogen_a_train pipeline_tag: visual-question-answering --- # QLoRA Fine-tuned PaliGemma-3B for Visual Reasoning on CLEVR-CoGen This repository contains the QLoRA adapters for the `google/paligemma-3b-pt-224` model, fine-tuned for a Visual Question Answering (VQA) task on the `leonardPKU/clevr_cogen_a_train` dataset. This fine-tuned model demonstrates significantly improved performance on questions requiring spatial and logical reasoning about complex scenes with multiple objects compared to the base PaliGemma model. The use of QLoRA (4-bit quantization) makes it possible to run and train this powerful model on consumer-grade hardware. ## Model Description - **Base Model:** `google/paligemma-3b-pt-224` - **Fine-tuning Technique:** QLoRA (Quantized Low-Rank Adaptation) - **Task:** Visual Question Answering (VQA) - **Dataset:** A subset of `leonardPKU/clevr_cogen_a_train` - **Key Improvement:** Enhanced ability to perform complex reasoning, counting, and attribute identification in visual scenes. ## How to Use To use this model, you must load the 4-bit quantized base model and then apply the PEFT adapters from this repository. ### Installation First, ensure you have the necessary libraries installed: ```bash pip install -q transformers peft bitsandbytes accelerate Pillow requests