File size: 18,399 Bytes
e6f3707 7a3ca4f e6f3707 7a3ca4f e6f3707 7a3ca4f e6f3707 7a3ca4f e6f3707 7a3ca4f b6bd381 7a3ca4f b6bd381 7a3ca4f b6bd381 7a3ca4f b6bd381 7a3ca4f b6bd381 7a3ca4f e6f3707 7a3ca4f b6bd381 7a3ca4f b6bd381 7a3ca4f b6bd381 e6f3707 b6bd381 7a3ca4f b6bd381 7a3ca4f 7d4b740 7a3ca4f e6f3707 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 |
---
license: apache-2.0
library_name: transformers
pipeline_tag: image-text-to-text
---
<p align="center">
<img src="images/logo.png" width="700"/>
<p>
<h1 align="center">
POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion
</h1>
<p align="center">
<a href="https://huggingface.co/tencent/POINTS-Reader">
<img src="https://img.shields.io/badge/%F0%9F%A4%97_HuggingFace-Model-ffbd45.svg" alt="HuggingFace">
</a>
<a href="https://github.com/Tencent/POINTS-Reader">
<img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub Code">
</a>
<a href="https://huggingface.co/papers/2509.01215">
<img src="https://img.shields.io/badge/Paper-POINTS--Reader-d4333f?logo=arxiv&logoColor=white&colorA=cccccc&colorB=d4333f&style=flat" alt="Paper">
</a>
<a href="https://komarev.com/ghpvc/?username=tencent&repo=POINTS-Reader&color=brightgreen&label=Views" alt="view">
<img src="https://komarev.com/ghpvc/?username=tencent&repo=POINTS-Reader&color=brightgreen&label=Views" alt="view">
</a>
</p>
We are delighted to announce that the WePOINTS family has welcomed a new member: POINTS-Reader, a vision-language model for end-to-end document conversion, as introduced in the paper [POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion](https://huggingface.co/papers/2509.01215).
## News
- 2025.08.27: Support deploying POINTS-Reader with SGLang💪💪💪.
- 2025.08.26: We released the weights of the most recent version of POINT-Reader🔥🔥🔥.
- 2025.08.21: POINTS-Reader is accepted by **EMNLP 2025** for presentation at the **Main Conference**🎉🎉🎉.
## Introduction
1. **Simplicity**: POINTS-Reader is a very streamlined model that fully follows the structure of POINTS1.5, except that we have replaced Qwen2.5-7B-Instruct with Qwen2.5-3B-Instruct. Moreover, the input and output of POINTS-Reader are extremely straightforward. The input consists of a fixed prompt and a document image, and the output contains only a string (text extracted from the document image). The model's output is the final result delivered to the user without any post-processing.
2. **Performance**: Currently, POINTS-Reader supports extraction from both Chinese and English documents, achieving impressive results, with scores of 0.133 for English and 0.212 for Chinese on OmniDocBench.
3. **High Throughput**: With current mainstream inference frameworks, such as SGLang and vLLM, optimization is predominantly focused on LLMs. Thus, a large ViT would significantly impact the model’s throughput, which is why we selected a ViT with a moderate number of parameters (600M NaViT used in POINTS1.5). Combined with our support for SGLang, we currently achieve a very satisfactory throughput. We will also provide support for vLLM in the future.
4. **Open-source Technical Approach**: In the POINTS-Reader paper, we propose a two-stage data augmentation strategy. The first stage leverages automated data to endow the model with basic document extraction capabilities. In the subsequent stage, continuous self-evolution improves the quality of data generated by the model. The self-evolution approach in the second stage is highly extensible and can be applied to virtually any model.
## Results
For comparison, we use the results reported by [OmniDocBench](https://github.com/opendatalab/OmniDocBench/tree/main) and POINTS-Reader. Compared with the version submitted to EMNLP 2025, the current release provides (1) improved performance and (2) support for Chinese documents. Both enhancements build upon the methods proposed in this paper.
<table style="width: 92%; margin: auto; border-collapse: collapse;">
<thead>
<tr>
<th rowspan="2">Method Type</th>
<th rowspan="2">Methods</th>
<th colspan="2">Overall<sup>Edit</sup>↓</th>
<th colspan="2">Text<sup>Edit</sup>↓</th>
<th colspan="2">Formula<sup>Edit</sup>↓</th>
<th colspan="2">Formula<sup>CDM</sup>↑</th>
<th colspan="2">Table<sup>TEDS</sup>↑</th>
<th colspan="2">Table<sup>Edit</sup>↓</th>
<th colspan="2">Read Order<sup>Edit</sup>↓</th>
</tr>
<tr>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="9">Pipeline Tools</td>
<td>MinerU-pipeline-2.1.1</td>
<td>0.162</td>
<td>0.244</td>
<td>0.072</td>
<td>0.111</td>
<td>0.313</td>
<td>0.581</td>
<td>79.2</td>
<td>48.8</td>
<td>77.4</td>
<td>79.5</td>
<td>0.166</td>
<td>0.15</td>
<td>0.097</td>
<td>0.136</td>
</tr>
<tr>
<td>Marker-1.2.3</td>
<td>0.336</td>
<td>0.556</td>
<td>0.08</td>
<td>0.315</td>
<td>0.53</td>
<td>0.883</td>
<td>17.6</td>
<td>11.7</td>
<td>67.6</td>
<td>49.2</td>
<td>0.619</td>
<td>0.685</td>
<td>0.114</td>
<td>0.34</td>
</tr>
<tr>
<td>Marker-1.7.1</td>
<td>0.296</td>
<td>0.497</td>
<td>0.085</td>
<td>0.293</td>
<td>0.374</td>
<td>0.688</td>
<td>79.0</td>
<td>36.7</td>
<td>67.6</td>
<td>54.0</td>
<td>0.609</td>
<td>0.678</td>
<td>0.116</td>
<td>0.329</td>
</tr>
<tr>
<td>PaddleOCR PP-StructureV3</td>
<td>0.145</td>
<td>0.206</td>
<td>0.058</td>
<td>0.088</td>
<td>0.295</td>
<td>0.535</td>
<td>81.8</td>
<td>52.1</td>
<td>77.2</td>
<td>83.9</td>
<td>0.159</td>
<td>0.109</td>
<td>0.069</td>
<td>0.091</td>
</tr>
<tr>
<td>Mathpix</td>
<td>0.191</td>
<td>0.364</td>
<td>0.105</td>
<td>0.381</td>
<td>0.306</td>
<td>0.454</td>
<td>82.7</td>
<td>64.6</td>
<td>77.0</td>
<td>67.1</td>
<td>0.243</td>
<td>0.32</td>
<td>0.108</td>
<td>0.304</td>
</tr>
<tr>
<td>Docling-2.14.0</td>
<td>0.589</td>
<td>0.909</td>
<td>0.416</td>
<td>0.987</td>
<td>0.999</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>61.3</td>
<td>25.0</td>
<td>0.627</td>
<td>0.810</td>
<td>0.313</td>
<td>0.837</td>
</tr>
<tr>
<td>Pix2Text-1.1.2.3</td>
<td>0.32</td>
<td>0.528</td>
<td>0.138</td>
<td>0.356</td>
<td>0.276</td>
<td>0.611</td>
<td>78.4</td>
<td>39.6</td>
<td>73.6</td>
<td>66.2</td>
<td>0.584</td>
<td>0.645</td>
<td>0.281</td>
<td>0.499</td>
</tr>
<tr>
<td>Unstructured-0.17.2</td>
<td>0.586</td>
<td>0.716</td>
<td>0.198</td>
<td>0.481</td>
<td>0.999</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0.064</td>
<td>1</td>
<td>0.998</td>
<td>0.145</td>
<td>0.387</td>
</tr>
<tr>
<td>OpenParse-0.7.0</td>
<td>0.646</td>
<td>0.814</td>
<td>0.681</td>
<td>0.974</td>
<td>0.996</td>
<td>1</td>
<td>0.106</td>
<td>0</td>
<td>64.8</td>
<td>27.5</td>
<td>0.284</td>
<td>0.639</td>
<td>0.595</td>
<td>0.641</td>
</tr>
<tr>
<td rowspan="11">Expert VLMs</td>
<td><strong style="color: green;">POINTS-Reader-3B</strong></td>
<td>0.133</td>
<td>0.212</td>
<td>0.062</td>
<td>0.139</td>
<td>0.304</td>
<td>0.465</td>
<td>-</td>
<td>-</td>
<td>83.7</td>
<td>85.0</td>
<td>0.128</td>
<td>0.136</td>
<td>0.036</td>
<td>0.106</td>
</tr>
<tr>
<td>MinerU2.0-2505-0.9B</td>
<td>0.133</td>
<td>0.238</td>
<td>0.045</td>
<td>0.115</td>
<td>0.273</td>
<td>0.506</td>
<td>79.0</td>
<td>50.8</td>
<td>82.1</td>
<td>83.4</td>
<td>0.15</td>
<td>0.209</td>
<td>0.066</td>
<td>0.122</td>
</tr>
<tr>
<td>MonkeyOCR-pro-1.2B</td>
<td>0.146</td>
<td>0.221</td>
<td>0.068</td>
<td>0.118</td>
<td>0.272</td>
<td>0.452</td>
<td>76.7</td>
<td>63.3</td>
<td>81.3</td>
<td>85.5</td>
<td>0.149</td>
<td>0.134</td>
<td>0.093</td>
<td>0.179</td>
</tr>
<tr>
<td>Dolphin</td>
<td>0.356</td>
<td>0.440</td>
<td>0.352</td>
<td>0.440</td>
<td>0.465</td>
<td>0.604</td>
<td>61.6</td>
<td>40.4</td>
<td>70.2</td>
<td>56.8</td>
<td>0.258</td>
<td>0.367</td>
<td>0.35</td>
<td>0.351</td>
</tr>
<tr>
<td>Nanonets-OCR-s</td>
<td>0.283</td>
<td>0.295</td>
<td>0.134</td>
<td>0.231</td>
<td>0.518</td>
<td>0.546</td>
<td>63.2</td>
<td>52.0</td>
<td>76.8</td>
<td>79.4</td>
<td>0.343</td>
<td>0.201</td>
<td>0.135</td>
<td>0.2</td>
</tr>
<tr>
<td>OCRFlux-3B</td>
<td>0.238</td>
<td>0.349</td>
<td>0.112</td>
<td>0.256</td>
<td>0.447</td>
<td>0.716</td>
<td>60.2</td>
<td>31.9</td>
<td>69.0</td>
<td>80.0</td>
<td>0.269</td>
<td>0.162</td>
<td>0.126</td>
<td>0.263</td>
</tr>
<tr>
<td>GOT-OCR</td>
<td>0.287</td>
<td>0.411</td>
<td>0.189</td>
<td>0.315</td>
<td>0.360</td>
<td>0.528</td>
<td>74.3</td>
<td>45.3</td>
<td>53.2</td>
<td>47.2</td>
<td>0.459</td>
<td>0.52</td>
<td>0.141</td>
<td>0.28</td>
</tr>
<tr>
<td>Nougat</td>
<td>0.452</td>
<td>0.973</td>
<td>0.365</td>
<td>0.998</td>
<td>0.488</td>
<td>0.941</td>
<td>15.1</td>
<td>16.8</td>
<td>39.9</td>
<td>0.0</td>
<td>0.572</td>
<td>1.000</td>
<td>0.382</td>
<td>0.954</td>
</tr>
<tr>
<td>Mistral OCR</td>
<td>0.268</td>
<td>0.439</td>
<td>0.072</td>
<td>0.325</td>
<td>0.318</td>
<td>0.495</td>
<td>64.6</td>
<td>45.9</td>
<td>75.8</td>
<td>63.6</td>
<td>0.6</td>
<td>0.65</td>
<td>0.083</td>
<td>0.284</td>
</tr>
<tr>
<td>OLMOCR-sglang</td>
<td>0.326</td>
<td>0.469</td>
<td>0.097</td>
<td>0.293</td>
<td>0.455</td>
<td>0.655</td>
<td>74.3</td>
<td>43.2</td>
<td>68.1</td>
<td>61.3</td>
<td>0.608</td>
<td>0.652</td>
<td>0.145</td>
<td>0.277</td>
</tr>
<tr>
<td>SmolDocling-256M_transformer</td>
<td>0.493</td>
<td>0.816</td>
<td>0.262</td>
<td>0.838</td>
<td>0.753</td>
<td>0.997</td>
<td>32.1</td>
<td>0.551</td>
<td>44.9</td>
<td>16.5</td>
<td>0.729</td>
<td>0.907</td>
<td>0.227</td>
<td>0.522</td>
</tr>
<tr>
<td rowspan="9">General VLMs</td>
<tr>
<td>Gemini2.0-flash</td>
<td>0.191</td>
<td>0.264</td>
<td>0.091</td>
<td>0.139</td>
<td>0.389</td>
<td>0.584</td>
<td>77.6</td>
<td>43.6</td>
<td>79.7</td>
<td>78.9</td>
<td>0.193</td>
<td>0.206</td>
<td>0.092</td>
<td>0.128</td>
</tr>
<tr>
<td>Gemini2.5-Pro</td>
<td>0.148</td>
<td>0.212</td>
<td>0.055</td>
<td>0.168</td>
<td>0.356</td>
<td>0.439</td>
<td>80.0</td>
<td>69.4</td>
<td>85.8</td>
<td>86.4</td>
<td>0.13</td>
<td>0.119</td>
<td>0.049</td>
<td>0.121</td>
</tr>
<tr>
<td>GPT4o</td>
<td>0.233</td>
<td>0.399</td>
<td>0.144</td>
<td>0.409</td>
<td>0.425</td>
<td>0.606</td>
<td>72.8</td>
<td>42.8</td>
<td>72.0</td>
<td>62.9</td>
<td>0.234</td>
<td>0.329</td>
<td>0.128</td>
<td>0.251</td>
</tr>
<tr>
<td>Qwen2-VL-72B</td>
<td>0.252</td>
<td>0.327</td>
<td>0.096</td>
<td>0.218</td>
<td>0.404</td>
<td>0.487</td>
<td>82.2</td>
<td>61.2</td>
<td>76.8</td>
<td>76.4</td>
<td>0.387</td>
<td>0.408</td>
<td>0.119</td>
<td>0.193</td>
</tr>
<tr>
<td>Qwen2.5-VL-7B</td>
<td>0.316</td>
<td>0.399</td>
<td>0.151</td>
<td>0.243</td>
<td>0.376</td>
<td>0.5</td>
<td>75.3</td>
<td>57.3</td>
<td>71.1</td>
<td>71.3</td>
<td>0.598</td>
<td>0.627</td>
<td>0.138</td>
<td>0.226</td>
</tr>
<tr>
<td>Qwen2.5-VL-72B</td>
<td>0.214</td>
<td>0.261</td>
<td>0.092</td>
<td>0.18</td>
<td>0.315</td>
<td>0.434</td>
<td>81.4</td>
<td>64.1</td>
<td>81.4</td>
<td>83.0</td>
<td>0.341</td>
<td>0.262</td>
<td>0.106</td>
<td>0.168</td>
</tr>
<tr>
<td>InternVL2-76B</td>
<td>0.44</td>
<td>0.443</td>
<td>0.353</td>
<td>0.290</td>
<td>0.543</td>
<td>0.701</td>
<td>67.4</td>
<td>44.1</td>
<td>63.0</td>
<td>60.2</td>
<td>0.547</td>
<td>0.555</td>
<td>0.317</td>
<td>0.228</td>
</tr>
<tr>
<td>InternVL3-78B</td>
<td>0.218</td>
<td>0.296</td>
<td>0.117</td>
<td>0.21</td>
<td>0.38</td>
<td>0.533</td>
<td>79.2</td>
<td>58.8</td>
<td>69.0</td>
<td>73.9</td>
<td>0.279</td>
<td>0.282</td>
<td>0.095</td>
<td>0.161</td>
</tr>
</tbody>
</table>
## Getting Started
This following code snippet has been tested with following environment:
```
python==3.10.12
torch==2.5.1
transformers==4.55.2
cuda==12.1
```
If you encounter environment issues, please feel free to open an issue.
### Run with Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, Qwen2VLImageProcessor
import torch
# We recommend using the following prompt to better performance,
# since it is used throughout the training process.
prompt = (
'Please extract all the text from the image with the following requirements:
'
'1. Return tables in HTML format.
'
'2. Return all other text in Markdown format.'
)
image_path = '/path/to/your/local/image'
model_path = 'tencent/POINTS-Reader'
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map='cuda')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
image_processor = Qwen2VLImageProcessor.from_pretrained(model_path)
content = [
dict(type='image', image=image_path),
dict(type='text', text=prompt)
]
messages = [
{
'role': 'user',
'content': content
}
]
generation_config = {
'max_new_tokens': 2048,
'repetition_penalty': 1.05,
'temperature': 0.7,
'top_p': 0.8,
'top_k': 20,
'do_sample': True
}
response = model.chat(
messages,
tokenizer,
image_processor,
generation_config
)
print(response)
```
If you encounter issues like repeation, please try to increase the resolution of the image to allievate the problem.
### Deploy with SGLang
We have created a [Pull Request](https://github.com/sgl-project/sglang/pull/9651) for SGLang. You can check out this branch and install SGLang in editable mode by following the [official guide](https://docs.sglang.ai/get_started/install.html) prior to the merging of this PR.
#### How to Deploy
You can deploy POINTS-Reader with SGLang using the following command:
```
python3 -m sglang.launch_server \
--model-path tencent/POINTS-Reader \
--tp-size 1 \
--dp-size 1 \
--chat-template points-v15-chat \
--trust-remote-code \
--port 8081
```
#### How to Use
You can use the following code to obtain results from SGLang:
```python
from typing import List
import requests
import json
def call_wepoints(messages: List[dict],
temperature: float = 0.0,
max_new_tokens: int = 2048,
repetition_penalty: float = 1.05,
top_p: float = 0.8,
top_k: int = 20,
do_sample: bool = True,
url: str = 'http://127.0.0.1:8081/v1/chat/completions') -> str:
"""Query WePOINTS model to generate a response.
Args:
messages (List[dict]): A list of messages to be sent to WePOINTS. The
messages should be the standard OpenAI messages, like:
[
{
'role': 'user',
'content': [
{
'type': 'text',
'text': 'Please describe this image in short'
},
{
'type': 'image_url',
'image_url': {'url': /path/to/image.jpg}
}
]
}
]
temperature (float, optional): The temperature of the model.
Defaults to 0.0.
max_new_tokens (int, optional): The maximum number of new tokens to generate.
Defaults to 2048.
repetition_penalty (float, optional): The penalty for repetition.
Defaults to 1.05.
top_p (float, optional): The top-p probability threshold.
Defaults to 0.8.
top_k (int, optional): The top-k sampling vocabulary size.
Defaults to 20.
do_sample (bool, optional): Whether to use sampling or greedy decoding.
Defaults to True.
url (str, optional): The URL of the WePOINTS model.
Defaults to 'http://127.0.0.1:8081/v1/chat/completions'.
Returns:
str: The generated response from WePOINTS.
"""
data = {
'model': 'WePoints',
'messages': messages,
'max_new_tokens': max_new_tokens,
'temperature': temperature,
'repetition_penalty': repetition_penalty,
'top_p': top_p,
'top_k': top_k,
'do_sample': do_sample,
}
response = requests.post(url,
json=data)
response = json.loads(response.text)
response = response['choices'][0]['message']['content']
return response
prompt = (
'Please extract all the text from the image with the following requirements:
'
'1. Return tables in HTML format.
'
'2. Return all other text in Markdown format.'
)
messages = [{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {'url': '/path/to/image.jpg'}
}
]
}]
response = call_wepoints(messages)
print(response)
```
## Known Issues
- **Complex Document Parsing**: POINTS-Reader can struggle with complex layouts (e.g., newspapers), often producing repeated or missing content.
- **Handwritten Document Parsing**: It also has difficulty handling handwritten inputs (e.g., receipts, notes), which can lead to recognition errors or omissions.
- **Multi-language Document Parsing**: POINTS-Reader currently supports only English and Chinese, limiting its effectiveness on other languages.
## Citation
If you use this model in your work, please cite the following paper:
```
@article{points-reader,
title={POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion},
author={Liu, Yuan and Zhongyin Zhao and Tian, Le and Haicheng Wang and Xubing Ye and Yangxiu You and Zilin Yu and Chuhan Wu and Zhou, Xiao and Yu, Yang and Zhou, Jie},
journal={arXiv preprint arXiv:2509.01215},
year={2025}
}
@article{liu2024points1,
title={POINTS1. 5: Building a Vision-Language Model towards Real World Applications},
author={Liu, Yuan and Tian, Le and Zhou, Xiao and Gao, Xinyu and Yu, Kavio and Yu, Yang and Zhou, Jie},
journal={arXiv preprint arXiv:2412.08443},
year={2024}
}
@article{liu2024points,
title={POINTS: Improving Your Vision-language Model with Affordable Strategies},
author={Liu, Yuan and Zhao, Zhongyin and Zhuang, Ziyuan and Tian, Le and Zhou, Xiao and Zhou, Jie},
journal={arXiv preprint arXiv:2409.04828},
year={2024}
}
@article{liu2024rethinking,
title={Rethinking Overlooked Aspects in Vision-Language Models},
author={Liu, Yuan and Tian, Le and Zhou, Xiao and Zhou, Jie},
journal={arXiv preprint arXiv:2405.11850},
year={2024}
}
``` |