File size: 6,806 Bytes
20958dd 8b109d8 20958dd a4cca29 5aa9f12 a4cca29 5aa9f12 a4cca29 20958dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
license: apache-2.0
datasets:
- Fredithefish/openassistant-guanaco-unfiltered
language:
- en
library_name: transformers
pipeline_tag: conversational
inference: false
tags:
- TensorBlock
- GGUF
base_model: Fredithefish/Guanaco-3B-Uncensored
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## Fredithefish/Guanaco-3B-Uncensored - GGUF
This repo contains GGUF format model files for [Fredithefish/Guanaco-3B-Uncensored](https://huggingface.co/Fredithefish/Guanaco-3B-Uncensored).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π Try it now! π</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
</tr>
</table>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Guanaco-3B-Uncensored-Q2_K.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q2_K.gguf) | Q2_K | 1.012 GB | smallest, significant quality loss - not recommended for most purposes |
| [Guanaco-3B-Uncensored-Q3_K_S.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q3_K_S.gguf) | Q3_K_S | 1.163 GB | very small, high quality loss |
| [Guanaco-3B-Uncensored-Q3_K_M.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q3_K_M.gguf) | Q3_K_M | 1.377 GB | very small, high quality loss |
| [Guanaco-3B-Uncensored-Q3_K_L.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q3_K_L.gguf) | Q3_K_L | 1.493 GB | small, substantial quality loss |
| [Guanaco-3B-Uncensored-Q4_0.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q4_0.gguf) | Q4_0 | 1.490 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Guanaco-3B-Uncensored-Q4_K_S.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q4_K_S.gguf) | Q4_K_S | 1.502 GB | small, greater quality loss |
| [Guanaco-3B-Uncensored-Q4_K_M.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q4_K_M.gguf) | Q4_K_M | 1.664 GB | medium, balanced quality - recommended |
| [Guanaco-3B-Uncensored-Q5_0.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q5_0.gguf) | Q5_0 | 1.798 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Guanaco-3B-Uncensored-Q5_K_S.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q5_K_S.gguf) | Q5_K_S | 1.798 GB | large, low quality loss - recommended |
| [Guanaco-3B-Uncensored-Q5_K_M.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q5_K_M.gguf) | Q5_K_M | 1.928 GB | large, very low quality loss - recommended |
| [Guanaco-3B-Uncensored-Q6_K.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q6_K.gguf) | Q6_K | 2.126 GB | very large, extremely low quality loss |
| [Guanaco-3B-Uncensored-Q8_0.gguf](https://huggingface.co/tensorblock/Guanaco-3B-Uncensored-GGUF/blob/main/Guanaco-3B-Uncensored-Q8_0.gguf) | Q8_0 | 2.751 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Guanaco-3B-Uncensored-GGUF --include "Guanaco-3B-Uncensored-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Guanaco-3B-Uncensored-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|