File size: 2,191 Bytes
b855174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---

language: en
license: mit
tags:
  - tensorflow
  - image-classification
  - medical-imaging
  - vascular-dementia
datasets:
  - custom
---


# EfficientNet Model for Vascular Dementia Detection

This model was trained to detect Vascular Dementia (VAD) from MRI scans. It uses an EfficientNet architecture fine-tuned on a custom dataset of brain MRI images.

## Model Description

- **Model Type:** EfficientNet
- **Task:** Binary classification (VAD-Demented vs. Non-Demented)
- **Input:** MRI brain scans (224x224 RGB)
- **Output:** Binary classification with confidence score

## Usage

```python

import tensorflow as tf

import numpy as np

from PIL import Image



# Load the model

model = tf.keras.models.load_model("path/to/downloaded/model")



# Preprocess your image

image = Image.open("path/to/your/mri.jpg")

image = image.resize((224, 224))

image_array = np.array(image) / 255.0

image_array = np.expand_dims(image_array, axis=0)



# Get prediction

prediction = model.predict(image_array)

predicted_class = "VAD-Demented" if prediction[0][0] > 0.5 else "Non-Demented"

confidence = prediction[0][0] * 100 if prediction[0][0] > 0.5 else (1 - prediction[0][0]) * 100



print(f"Prediction: {predicted_class}")

print(f"Confidence: {confidence:.2f}%")

```

## API Usage

This model can be used directly with the Hugging Face Inference API:

```python

import requests

import base64

from PIL import Image

import io



# Convert image to base64

image = Image.open("path/to/your/mri.jpg")

buffered = io.BytesIO()

image.save(buffered, format="JPEG")

img_str = base64.b64encode(buffered.getvalue()).decode()



# API endpoint

API_URL = "https://api-inference.huggingface.co/models/thakshana02/vad-efficientnet-model"



# API headers with your token

headers = {"Authorization": "Bearer YOUR_TOKEN"}



# Make prediction request

response = requests.post(API_URL, headers=headers, json={"inputs": {"image": img_str}})

result = response.json()

print(result)

```

## Limitations

This model is intended for research purposes only and should not be used for clinical diagnosis without proper validation by healthcare professionals.