File size: 5,014 Bytes
ac7060e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c4790a
 
ac7060e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c4790a
 
c350598
ac7060e
 
 
9c4790a
 
ac7060e
 
 
 
 
 
 
 
9c4790a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac7060e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Mistral-7B-v0.1_cola_relu
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral-7B-v0.1_cola_relu

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3969
- Accuracy: 0.8528

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 2
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 750

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.3308        | 0.33  | 10   | 3.2312          | 0.6721   |
| 1.9948        | 0.66  | 20   | 1.9259          | 0.5628   |
| 1.755         | 0.98  | 30   | 1.6666          | 0.6529   |
| 1.2472        | 1.31  | 40   | 1.3599          | 0.6280   |
| 0.7           | 1.64  | 50   | 1.0398          | 0.6903   |
| 1.0118        | 1.97  | 60   | 0.8845          | 0.6798   |
| 0.7947        | 2.3   | 70   | 0.7958          | 0.7200   |
| 0.8203        | 2.62  | 80   | 0.7160          | 0.7191   |
| 0.8548        | 2.95  | 90   | 0.6607          | 0.7296   |
| 0.5277        | 3.28  | 100  | 0.6292          | 0.7430   |
| 0.7134        | 3.61  | 110  | 0.6562          | 0.7440   |
| 0.7233        | 3.93  | 120  | 0.6248          | 0.7488   |
| 0.5547        | 4.26  | 130  | 0.5399          | 0.7488   |
| 0.5171        | 4.59  | 140  | 0.5230          | 0.7536   |
| 0.492         | 4.92  | 150  | 0.5184          | 0.7632   |
| 0.5003        | 5.25  | 160  | 0.4999          | 0.7728   |
| 0.4884        | 5.57  | 170  | 0.4827          | 0.7814   |
| 0.514         | 5.9   | 180  | 0.5048          | 0.7910   |
| 0.3669        | 6.23  | 190  | 0.4783          | 0.7977   |
| 0.4786        | 6.56  | 200  | 0.4533          | 0.7948   |
| 0.4244        | 6.89  | 210  | 0.4379          | 0.8035   |
| 0.3235        | 7.21  | 220  | 0.4439          | 0.8073   |
| 0.4307        | 7.54  | 230  | 0.4258          | 0.8236   |
| 0.404         | 7.87  | 240  | 0.4184          | 0.8188   |
| 0.3772        | 8.2   | 250  | 0.4089          | 0.8207   |
| 0.3937        | 8.52  | 260  | 0.4595          | 0.8092   |
| 0.3896        | 8.85  | 270  | 0.4148          | 0.8265   |
| 0.3296        | 9.18  | 280  | 0.4130          | 0.8236   |
| 0.328         | 9.51  | 290  | 0.3944          | 0.8389   |
| 0.3383        | 9.84  | 300  | 0.3862          | 0.8322   |
| 0.3146        | 10.16 | 310  | 0.3847          | 0.8418   |
| 0.3069        | 10.49 | 320  | 0.4192          | 0.8245   |
| 0.2732        | 10.82 | 330  | 0.4190          | 0.8313   |
| 0.2819        | 11.15 | 340  | 0.4427          | 0.8188   |
| 0.3738        | 11.48 | 350  | 0.3807          | 0.8408   |
| 0.3004        | 11.8  | 360  | 0.3722          | 0.8437   |
| 0.2894        | 12.13 | 370  | 0.3922          | 0.8341   |
| 0.2747        | 12.46 | 380  | 0.3782          | 0.8370   |
| 0.2812        | 12.79 | 390  | 0.3667          | 0.8514   |
| 0.2369        | 13.11 | 400  | 0.3884          | 0.8408   |
| 0.2931        | 13.44 | 410  | 0.3807          | 0.8456   |
| 0.2702        | 13.77 | 420  | 0.3742          | 0.8399   |
| 0.2821        | 14.1  | 430  | 0.3737          | 0.8485   |
| 0.2358        | 14.43 | 440  | 0.3739          | 0.8456   |
| 0.2326        | 14.75 | 450  | 0.3699          | 0.8514   |
| 0.2475        | 15.08 | 460  | 0.3771          | 0.8466   |
| 0.2402        | 15.41 | 470  | 0.4064          | 0.8351   |
| 0.2435        | 15.74 | 480  | 0.3758          | 0.8456   |
| 0.1896        | 16.07 | 490  | 0.3779          | 0.8456   |
| 0.2228        | 16.39 | 500  | 0.3868          | 0.8456   |
| 0.2149        | 16.72 | 510  | 0.3800          | 0.8485   |
| 0.1781        | 17.05 | 520  | 0.3841          | 0.8514   |
| 0.1729        | 17.38 | 530  | 0.4000          | 0.8476   |
| 0.1897        | 17.7  | 540  | 0.3866          | 0.8456   |
| 0.1537        | 18.03 | 550  | 0.4317          | 0.8370   |
| 0.1478        | 18.36 | 560  | 0.4197          | 0.8466   |
| 0.1686        | 18.69 | 570  | 0.4325          | 0.8418   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0