File size: 6,399 Bytes
665f60b 4c7d4fa 665f60b 4c7d4fa e82b52e 4c7d4fa 665f60b b2779c7 665f60b b9e3d44 6a609af b9e3d44 ae47cd9 1f38e43 ae47cd9 c1b14dd ae47cd9 a1b1746 665f60b 5ee1f54 fee7f6a 5c54fbb 665f60b 2f40cf7 8f6e3aa 665f60b fee7f6a 0f52eab b2779c7 665f60b 02d93ed 4635542 665f60b 4635542 665f60b dc4fa91 02d93ed 665f60b 4635542 02d93ed 665f60b 4635542 665f60b 1cb07e7 665f60b b2779c7 6a609af 03a967d b2779c7 e38e114 b2779c7 38bd05a e38e114 38bd05a 1be1d5c e04c00d 38bd05a a2ef1aa 665f60b 886f38b 665f60b cc81559 665f60b e04c00d 665f60b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
license: apache-2.0
metrics:
- mse
- mae
- mase
- wql
- crps
pipeline_tag: time-series-forecasting
datasets:
- thuml/UTSD
- Salesforce/lotsa_data
- autogluon/chronos_datasets
tags:
- time series
- time-series
- forecasting
- foundation models
- pretrained models
- generative models
- time series foundation models
---
# Sundial
🚩 **News (2025.06)** Sundial has been accepted as **ICML 2025 Oral** (Top 1%).
🚩 **News (2025.05)** Get **1st MASE** on the [GIFT-Eval](https://huggingface.co/spaces/Salesforce/GIFT-Eval) Benchmark.
🚩 **News (2025.02)** Get **1st MSE/MAE** zero-shot performance on [Time-Series-Library](https://github.com/thuml/Time-Series-Library) datasets.

Sundial is a family of **generative** time series foundation models. The model can make zero-shot predictions for **point** and **probabilistic** forecasting. [[Slides]](https://cloud.tsinghua.edu.cn/f/8d526337afde465e87c9/) [[Poster]](https://cloud.tsinghua.edu.cn/f/cc2a156315e9453f99b3/) [[Intro (CN)]](https://mp.weixin.qq.com/s/y3sc2e2lmW1sqfnoK-ZdDA).
Not only the mean or quantiles, you can estimate anything about the predictive distribution with raw generated samples.
The base version is pre-trained on **1 trillion** time points with **128M** parameters. For more information, please refer to this [paper](https://arxiv.org/pdf/2502.00816).
**Sundial** can be viewed as an **ARMA** model (Auto-Regression and Moving-Average). Transformer learns auto-regressive token representations. Conditioned on them, TimeFlow transforms random noises into non-deterministic predictions.

**Overall Architecture**: The input time series is divided into patch tokens, which are embedded from the original continuous values. The patch embeddings are fed into a decoder-only Transformer, a stable and speedup version that learns token representations. The model is optimized using our TimeFlow Loss, a parameterized loss function that models per-token probability distribution conditioned on the learned representations, and generates multiple plausible predictions under the flow-matching framework.
## Quickstart
```
pip install transformers==4.40.1 # Use this version and Python 3.10 for stable compatibility
```
```
import torch
from transformers import AutoModelForCausalLM
# load pretrain model
# supports different lookback/forecast lengths
model = AutoModelForCausalLM.from_pretrained('thuml/sundial-base-128m', trust_remote_code=True)
# prepare input
batch_size, lookback_length = 1, 2880
seqs = torch.randn(batch_size, lookback_length)
# Note that Sundial can generate multiple probable predictions
forecast_length = 96
num_samples = 20
output = model.generate(seqs, max_new_tokens=forecast_length, num_samples=num_samples)
# use raw predictions for mean/quantiles/confidence-interval estimation
print(output.shape)
```
More examples for predicting quantiles or confidence intervals are provided in this [notebook](https://github.com/thuml/Sundial/blob/main/examples/quickstart_zero_shot_generation.ipynb).
## Evaluation
We evaluate performance on the following benchmarks:
- [GIFT-Eval (1st MASE)](https://cdn-uploads.huggingface.co/production/uploads/64fbe24a2d20ced4e91de38a/3BxatwayhK5GAoqMf1oHv.png) [[Leaderboard]](https://huggingface.co/spaces/Salesforce/GIFT-Eval).
- [Time-Series-Library (1st MSE/MAE)](https://cdn-uploads.huggingface.co/production/uploads/64fbe24a2d20ced4e91de38a/5VqnFwWTWoYz877Zkluiw.png).
- [FEV Leaderboard](https://cdn-uploads.huggingface.co/production/uploads/64fbe24a2d20ced4e91de38a/mrKL9QmX-aX8rCiwxKgmA.png).
We are actively working around it and are glad to hear suggestions and noteworthy cases :)
## Inference Time
* Hardware: Apple M1 Pro CPU (16 GB)
| Lookback Length | Prediction Length | # Generated Samples | Inference Time | Accelerate By |
| --------------- | ----------------- | ------------------- | -------------- | -------------- |
| 672 | 16 | 1 | 249ms | - |
| 2880 | 16 | 1 | 510ms | FlashAttention |
| 2880 | 720 | 1 | 510ms | Multi-Patch Prediction |
| 2880 | 1440 | 1 | 789ms | KV Cache |
| 2880 | 720 | 20 | 949ms | Shared Condition |
* Hardware: A100-40G GPU, following [Chronos](https://arxiv.org/abs/2403.07815) paper.

## Specification
* **Architecture**: Causal Transformer (Decoder-only)
* **Pre-training Scale**: 1032B time points
* **Context Length**: up to 2880
* **ReNorm**: Default=True
* **Patch Length**: 16
* **Multi-Patch Prediction Lengt**h: 720
* **Parameter Count**: 128M
* **Number of Layers**: 12
* **Precision**: FP32
* **Speedup**: KV Cache & FlashAttention
## Acknowledgments
This work was supported by the National Natural Science Foundation of China (62022050 and U2342217), the BNRist Innovation Fund (BNR2024RC01010), and the National Engineering Research Center for Big Data Software.
The model is mostly built from the Internet public time series dataset, which comes from different research teams and providers. We sincerely thank all individuals and organizations who have contributed the data. Without their generous sharing, this model would not have existed.
## Citation
If you find Sundial helpful for your research, please cite our paper:
```
@article{liu2025sundial,
title={Sundial: A Family of Highly Capable Time Series Foundation Models},
author={Liu, Yong and Qin, Guo and Shi, Zhiyuan and Chen, Zhi and Yang, Caiyin and Huang, Xiangdong and Wang, Jianmin and Long, Mingsheng},
journal={arXiv preprint arXiv:2502.00816},
year={2025}
}
```
## Contact
If you have any questions or want to use the code, feel free to contact:
* Yong Liu (liuyong21@mails.tsinghua.edu.cn)
* Guo Qin (qinguo24@mails.tsinghua.edu.cn)
## License
This model is licensed under the Apache-2.0 License. |