File size: 4,188 Bytes
d463a50
 
 
 
 
 
 
 
 
 
 
 
e49686a
d463a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
base_model:
- swiss-ai/Apertus-70B-Instruct-2509
---

This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [swiss-ai/Apertus-70B-Instruct-2509](https://huggingface.co/swiss-ai/Apertus-70B-Instruct-2509).

### Example usage:

- vLLM

```bash
vllm serve tiny-random/apertus
```

- Transformers

```python
import os
import re

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "tiny-random/apertus"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
messages = [
    {"role": "user", "content": "How to make pasta?"},
]
tokenized_chat = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt",
)
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=128)
output_text = tokenizer.decode(outputs[0])
print(output_text)
```

### Codes to create this repo:

```python
import json
from pathlib import Path

import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoProcessor,
    GenerationConfig,
    set_seed,
)

source_model_id = "swiss-ai/Apertus-70B-Instruct-2509"
save_folder = "/tmp/tiny-random/apertus"

processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
    config_json = json.load(f)
config_json['hidden_size'] = 8
config_json['head_dim'] = 32  # vllm requirement
config_json['intermediate_size'] = 32
config_json['num_attention_heads'] = 8
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 4  # better support tensor parallel
config_json['tie_word_embeddings'] = False
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(
    save_folder,
    trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
    model.generation_config = GenerationConfig.from_pretrained(
        source_model_id, trust_remote_code=True,
    )
    model.generation_config.do_sample = True
set_seed(42)
model = model.cpu()  # cpu is more stable for random initialization across machines
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.1)
        print(name, p.shape)
model.save_pretrained(save_folder)
```

### Printing the model:

```text
ApertusForCausalLM(
  (model): ApertusModel(
    (embed_tokens): Embedding(131072, 8, padding_idx=3)
    (layers): ModuleList(
      (0-1): 2 x ApertusDecoderLayer(
        (self_attn): ApertusAttention(
          (q_proj): Linear(in_features=8, out_features=256, bias=False)
          (k_proj): Linear(in_features=8, out_features=128, bias=False)
          (v_proj): Linear(in_features=8, out_features=128, bias=False)
          (o_proj): Linear(in_features=256, out_features=8, bias=False)
          (q_norm): ApertusRMSNorm((32,), eps=1e-05)
          (k_norm): ApertusRMSNorm((32,), eps=1e-05)
        )
        (mlp): ApertusMLP(
          (up_proj): Linear(in_features=8, out_features=32, bias=False)
          (down_proj): Linear(in_features=32, out_features=8, bias=False)
          (act_fn): XIELUActivation()
        )
        (attention_layernorm): ApertusRMSNorm((8,), eps=1e-05)
        (feedforward_layernorm): ApertusRMSNorm((8,), eps=1e-05)
      )
    )
    (norm): ApertusRMSNorm((8,), eps=1e-05)
    (rotary_emb): ApertusRotaryEmbedding()
  )
  (lm_head): Linear(in_features=8, out_features=131072, bias=False)
)
```