--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - ibm-granite/granite-4.0-h-small --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [ibm-granite/granite-4.0-h-small](https://huggingface.co/ibm-granite/granite-4.0-h-small). ### Example usage: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "tiny-random/granite-moe-hybrid" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, trust_remote_code=True, ) pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True) print(pipe('Write an article about Artificial Intelligence.')) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, set_seed, ) source_model_id = "ibm-granite/granite-4.0-h-small" save_folder = "/tmp/tiny-random/granite-moe-hybrid" processor = AutoTokenizer.from_pretrained(source_model_id) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['hidden_size'] = 32 config_json['intermediate_size'] = 128 config_json['layer_types'] = ['mamba', 'attention'] config_json.update({ 'mamba_expand': int(4096 / 32 * 2), }) config_json['num_attention_heads'] = 2 config_json['shared_intermediate_size'] = 128 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 2 config_json['tie_word_embeddings'] = True with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) print(model) ``` ### Printing the model: ```text GraniteMoeHybridForCausalLM( (model): GraniteMoeHybridModel( (embed_tokens): Embedding(100352, 32, padding_idx=100256) (layers): ModuleList( (0): GraniteMoeHybridDecoderLayer( (block_sparse_moe): GraniteMoeHybridMoE( (activation): SiLU() (input_linear): GraniteMoeHybridParallelExperts() (output_linear): GraniteMoeHybridParallelExperts() (router): GraniteMoeHybridTopKGating( (layer): Linear(in_features=32, out_features=72, bias=False) ) ) (input_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05) (post_attention_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05) (shared_mlp): GraniteMoeHybridMLP( (activation): SiLU() (input_linear): Linear(in_features=32, out_features=256, bias=False) (output_linear): Linear(in_features=128, out_features=32, bias=False) ) (mamba): GraniteMoeHybridMambaLayer( (act): SiLU() (conv1d): Conv1d(8448, 8448, kernel_size=(4,), stride=(1,), padding=(3,), groups=8448) (in_proj): Linear(in_features=32, out_features=16768, bias=False) (norm): GraniteMoeHybridRMSNormGated() (out_proj): Linear(in_features=8192, out_features=32, bias=False) ) ) (1): GraniteMoeHybridDecoderLayer( (block_sparse_moe): GraniteMoeHybridMoE( (activation): SiLU() (input_linear): GraniteMoeHybridParallelExperts() (output_linear): GraniteMoeHybridParallelExperts() (router): GraniteMoeHybridTopKGating( (layer): Linear(in_features=32, out_features=72, bias=False) ) ) (input_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05) (post_attention_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05) (shared_mlp): GraniteMoeHybridMLP( (activation): SiLU() (input_linear): Linear(in_features=32, out_features=256, bias=False) (output_linear): Linear(in_features=128, out_features=32, bias=False) ) (self_attn): GraniteMoeHybridAttention( (q_proj): Linear(in_features=32, out_features=32, bias=False) (k_proj): Linear(in_features=32, out_features=32, bias=False) (v_proj): Linear(in_features=32, out_features=32, bias=False) (o_proj): Linear(in_features=32, out_features=32, bias=False) ) ) ) (norm): GraniteMoeHybridRMSNorm((32,), eps=1e-05) ) (lm_head): Linear(in_features=32, out_features=100352, bias=False) ) ```