--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - KORMo-Team/KORMo-10B-sft --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [KORMo-Team/KORMo-10B-sft](https://huggingface.co/KORMo-Team/KORMo-10B-sft). ### Example usage: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "tiny-random/kormo" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, trust_remote_code=True, ) pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True) print(pipe('Write an article about Artificial Intelligence.')) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, set_seed, ) source_model_id = "KORMo-Team/KORMo-10B-sft" save_folder = "/tmp/tiny-random/kormo" processor = AutoTokenizer.from_pretrained(source_model_id) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json['hidden_size'] = 8 config_json['intermediate_size'] = 64 config_json['num_attention_heads'] = 8 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 4 with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) print(model) def modify_automap(path, source_model_id): import json with open(path, 'r', encoding='utf-8') as f: content = json.load(f) automap = {} if content.get('auto_map', None) is not None: for key, value in content.get('auto_map').items(): if isinstance(value, str): value = source_model_id + '--' + value.split('--')[-1] else: value = [(source_model_id + '--' + v.split('--')[-1]) if '.' in str(v) else v for v in value] automap[key] = value with open(path, 'w', encoding='utf-8') as f: json.dump({**content, 'auto_map': automap}, f, indent=2) modify_automap(f"{save_folder}/config.json", source_model_id) # modify_automap(f'{save_folder}/processor_config.json', source_model_id) # modify_automap(f'{save_folder}/preprocessor_config.json', source_model_id) # modify_automap(f'{save_folder}/tokenizer_config.json', source_model_id) for python_file in Path(save_folder).glob('*.py'): python_file.unlink() ``` ### Printing the model: ```text KORMoForCausalLM( (model): KORMoModel( (embed_tokens): Embedding(125184, 8, padding_idx=125032) (layers): ModuleList( (0-1): 2 x DecoderLayer( (self_attn): Attention( (q_proj): Linear(in_features=8, out_features=1024, bias=False) (k_proj): Linear(in_features=8, out_features=512, bias=False) (v_proj): Linear(in_features=8, out_features=512, bias=False) (o_proj): Linear(in_features=1024, out_features=8, bias=False) ) (mlp): MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) (pre_attention_layernorm): RMSNorm((8,), eps=1e-05) (pre_mlp_layernorm): RMSNorm((8,), eps=1e-05) ) ) (norm): RMSNorm((8,), eps=1e-05) (rotary_emb): RotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=125184, bias=False) ) ```