File size: 8,383 Bytes
f4d13bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
library_name: transformers
pipeline_tag: image-text-to-text
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
base_model:
- lmms-lab/LLaVA-OneVision-1.5-8B-Instruct
---

This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [lmms-lab/LLaVA-OneVision-1.5-8B-Instruct](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-8B-Instruct).

### Example usage:

```python
from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM
from qwen_vl_utils import process_vision_info
import torch

# fix flash_attn_varlen_func, see https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5/pull/33/files
from flash_attn.flash_attn_interface import flash_attn_varlen_func
import transformers
transformers.modeling_flash_attention_utils.flash_attn_varlen_func = flash_attn_varlen_func

model_id = "tiny-random/llava-onevision-1.5"
model = AutoModelForCausalLM.from_pretrained(
    model_id, dtype=torch.bfloat16, device_map="cuda", trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=32)
generated_ids_trimmed = [
    out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```

### Codes to create this repo:

```python
import json
from pathlib import Path

import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoProcessor,
    GenerationConfig,
    AutoModelForImageTextToText,
    set_seed,
)
# fix flash_attn_varlen_func, see https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5/pull/33/files
from flash_attn.flash_attn_interface import flash_attn_varlen_func
import transformers
transformers.modeling_flash_attention_utils.flash_attn_varlen_func = flash_attn_varlen_func

source_model_id = "lmms-lab/LLaVA-OneVision-1.5-8B-Instruct"
save_folder = "/tmp/tiny-random/llava-onevision-1.5"

processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
    config_json = json.load(f)
for k, v in config_json['auto_map'].items():
    config_json['auto_map'][k] = f'{source_model_id}--{v}'

config_json['text_config'].update({
    'head_dim': 32,
    'hidden_size': 8,
    'intermediate_size': 64,
    'num_hidden_layers': 2,
    'num_attention_heads': 8,
    'num_key_value_heads': 4,
    'layer_types': ['full_attention'] * 2,
    'max_window_layers': 2,
})
config_json['vision_config'].update(
    {
        'depth': 2,
        'intermediate_size': 256,
        'embed_dim': 32 * 4,
        'hidden_size': 32 * 4,
        'text_hidden_size': 8,
        'num_heads': 4,
        'num_hidden_layers': 2,
    }
)
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(
    save_folder,
    trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True).to(torch.bfloat16)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
    model.generation_config = GenerationConfig.from_pretrained(
        source_model_id, trust_remote_code=True,
    )
    model.generation_config.do_sample = True
    print(model.generation_config)
model = model.cpu()
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.1)
        print(name, p.shape)
model.save_pretrained(save_folder)

def modify_automap(path, source_model_id):
    import json
    with open(path, 'r', encoding='utf-8') as f:
        content = json.load(f)
    automap = {}
    if content.get('auto_map', None) is not None:
        for key, value in content.get('auto_map').items():
            if isinstance(value, str):
                value = source_model_id + '--' + value.split('--')[-1]
            else:
                value = [(source_model_id + '--' + v.split('--')[-1]) if '.' in str(v) else v for v in value]
            automap[key] = value
        with open(path, 'w', encoding='utf-8') as f:
            json.dump({**content, 'auto_map': automap}, f, indent=2)

modify_automap(f"{save_folder}/config.json", source_model_id)
# modify_automap(f'{save_folder}/processor_config.json', source_model_id)
# modify_automap(f'{save_folder}/preprocessor_config.json', source_model_id)
# modify_automap(f'{save_folder}/tokenizer_config.json', source_model_id)
for python_file in Path(save_folder).glob('*.py'):
    python_file.unlink()
```

### Printing the model:

```text
LLaVAOneVision1_5_ForConditionalGeneration(
  (model): LLaVAOneVision1_5_Model(
    (visual): RiceTransformerPretrainedModel(
      (patch_embed): RicePatchEmbed(
        (proj): Conv2d(3, 128, kernel_size=(14, 14), stride=(14, 14), bias=False)
      )
      (rotary_pos_emb): RiceRotaryEmbedding()
      (pre_layernorm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
      (blocks): ModuleList(
        (0-1): 2 x RiceBlock(
          (norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
          (attn): RiceSdpaAttention(
            (qkv): Linear(in_features=128, out_features=384, bias=True)
            (proj): Linear(in_features=128, out_features=128, bias=True)
          )
          (mlp): RiceMlp(
            (fc1): Linear(in_features=128, out_features=256, bias=True)
            (act): GELUActivation()
            (fc2): Linear(in_features=256, out_features=128, bias=True)
          )
        )
      )
      (merger): RicePatchMerger(
        (ln_q): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
        (mlp): Sequential(
          (0): Linear(in_features=512, out_features=512, bias=True)
          (1): GELU(approximate='none')
          (2): Linear(in_features=512, out_features=8, bias=True)
        )
      )
    )
    (language_model): LLaVAOneVision1_5_TextModel(
      (embed_tokens): Embedding(151936, 8)
      (layers): ModuleList(
        (0-1): 2 x LLaVAOneVision1_5_DecoderLayer(
          (self_attn): LLaVAOneVision1_5_SdpaAttention(
            (q_proj): Linear(in_features=8, out_features=256, bias=False)
            (k_proj): Linear(in_features=8, out_features=128, bias=False)
            (v_proj): Linear(in_features=8, out_features=128, bias=False)
            (o_proj): Linear(in_features=256, out_features=8, bias=False)
            (q_norm): LLaVAOneVision1_5_RMSNorm((32,), eps=1e-06)
            (k_norm): LLaVAOneVision1_5_RMSNorm((32,), eps=1e-06)
          )
          (mlp): LLaVAOneVision1_5_MLP(
            (gate_proj): Linear(in_features=8, out_features=64, bias=False)
            (up_proj): Linear(in_features=8, out_features=64, bias=False)
            (down_proj): Linear(in_features=64, out_features=8, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): LLaVAOneVision1_5_RMSNorm((8,), eps=1e-06)
          (post_attention_layernorm): LLaVAOneVision1_5_RMSNorm((8,), eps=1e-06)
        )
      )
      (norm): LLaVAOneVision1_5_RMSNorm((8,), eps=1e-06)
      (rotary_emb): LLaVAOneVision1_5_RotaryEmbedding()
    )
  )
  (lm_head): Linear(in_features=8, out_features=151936, bias=False)
)
```