--- library_name: transformers pipeline_tag: image-text-to-text inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - lmms-lab/LLaVA-OneVision-1.5-8B-Instruct --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [lmms-lab/LLaVA-OneVision-1.5-8B-Instruct](https://huggingface.co/lmms-lab/LLaVA-OneVision-1.5-8B-Instruct). ### Example usage: ```python from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM from qwen_vl_utils import process_vision_info import torch # fix flash_attn_varlen_func, see https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5/pull/33/files from flash_attn.flash_attn_interface import flash_attn_varlen_func import transformers transformers.modeling_flash_attention_utils.flash_attn_varlen_func = flash_attn_varlen_func model_id = "tiny-random/llava-onevision-1.5" model = AutoModelForCausalLM.from_pretrained( model_id, dtype=torch.bfloat16, device_map="cuda", trust_remote_code=True ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=32) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, AutoModelForImageTextToText, set_seed, ) # fix flash_attn_varlen_func, see https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5/pull/33/files from flash_attn.flash_attn_interface import flash_attn_varlen_func import transformers transformers.modeling_flash_attention_utils.flash_attn_varlen_func = flash_attn_varlen_func source_model_id = "lmms-lab/LLaVA-OneVision-1.5-8B-Instruct" save_folder = "/tmp/tiny-random/llava-onevision-1.5" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json['text_config'].update({ 'head_dim': 32, 'hidden_size': 8, 'intermediate_size': 64, 'num_hidden_layers': 2, 'num_attention_heads': 8, 'num_key_value_heads': 4, 'layer_types': ['full_attention'] * 2, 'max_window_layers': 2, }) config_json['vision_config'].update( { 'depth': 2, 'intermediate_size': 256, 'embed_dim': 32 * 4, 'hidden_size': 32 * 4, 'text_hidden_size': 8, 'num_heads': 4, 'num_hidden_layers': 2, } ) with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True).to(torch.bfloat16) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True print(model.generation_config) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) def modify_automap(path, source_model_id): import json with open(path, 'r', encoding='utf-8') as f: content = json.load(f) automap = {} if content.get('auto_map', None) is not None: for key, value in content.get('auto_map').items(): if isinstance(value, str): value = source_model_id + '--' + value.split('--')[-1] else: value = [(source_model_id + '--' + v.split('--')[-1]) if '.' in str(v) else v for v in value] automap[key] = value with open(path, 'w', encoding='utf-8') as f: json.dump({**content, 'auto_map': automap}, f, indent=2) modify_automap(f"{save_folder}/config.json", source_model_id) # modify_automap(f'{save_folder}/processor_config.json', source_model_id) # modify_automap(f'{save_folder}/preprocessor_config.json', source_model_id) # modify_automap(f'{save_folder}/tokenizer_config.json', source_model_id) for python_file in Path(save_folder).glob('*.py'): python_file.unlink() ``` ### Printing the model: ```text LLaVAOneVision1_5_ForConditionalGeneration( (model): LLaVAOneVision1_5_Model( (visual): RiceTransformerPretrainedModel( (patch_embed): RicePatchEmbed( (proj): Conv2d(3, 128, kernel_size=(14, 14), stride=(14, 14), bias=False) ) (rotary_pos_emb): RiceRotaryEmbedding() (pre_layernorm): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (blocks): ModuleList( (0-1): 2 x RiceBlock( (norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (attn): RiceSdpaAttention( (qkv): Linear(in_features=128, out_features=384, bias=True) (proj): Linear(in_features=128, out_features=128, bias=True) ) (mlp): RiceMlp( (fc1): Linear(in_features=128, out_features=256, bias=True) (act): GELUActivation() (fc2): Linear(in_features=256, out_features=128, bias=True) ) ) ) (merger): RicePatchMerger( (ln_q): LayerNorm((128,), eps=1e-05, elementwise_affine=True) (mlp): Sequential( (0): Linear(in_features=512, out_features=512, bias=True) (1): GELU(approximate='none') (2): Linear(in_features=512, out_features=8, bias=True) ) ) ) (language_model): LLaVAOneVision1_5_TextModel( (embed_tokens): Embedding(151936, 8) (layers): ModuleList( (0-1): 2 x LLaVAOneVision1_5_DecoderLayer( (self_attn): LLaVAOneVision1_5_SdpaAttention( (q_proj): Linear(in_features=8, out_features=256, bias=False) (k_proj): Linear(in_features=8, out_features=128, bias=False) (v_proj): Linear(in_features=8, out_features=128, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) (q_norm): LLaVAOneVision1_5_RMSNorm((32,), eps=1e-06) (k_norm): LLaVAOneVision1_5_RMSNorm((32,), eps=1e-06) ) (mlp): LLaVAOneVision1_5_MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) (input_layernorm): LLaVAOneVision1_5_RMSNorm((8,), eps=1e-06) (post_attention_layernorm): LLaVAOneVision1_5_RMSNorm((8,), eps=1e-06) ) ) (norm): LLaVAOneVision1_5_RMSNorm((8,), eps=1e-06) (rotary_emb): LLaVAOneVision1_5_RotaryEmbedding() ) ) (lm_head): Linear(in_features=8, out_features=151936, bias=False) ) ```