--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - Qwen/Qwen3-Next-80B-A3B-Instruct --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [Qwen/Qwen3-Next-80B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct). ### Example usage: - vLLM ```bash VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 \ vllm serve tiny-random/qwen3-next-moe \ --tensor-parallel-size 4 \ --max-model-len 262144 \ --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}' ``` - SGLang ```bash SGLANG_ALLOW_OVERWRITE_LONGER_CONTEXT_LEN=1 \ python -m sglang.launch_server \ --model-path tiny-random/qwen3-next-moe \ --tp-size 4 --context-length 262144 \ --mem-fraction-static 0.8 \ --speculative-algo NEXTN \ --speculative-num-steps 3 \ --speculative-eagle-topk 1 \ --speculative-num-draft-tokens 4 ``` - Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "tiny-random/qwen3-next-moe" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, dtype="auto", device_map="cuda", ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt}, ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=8, ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() content = tokenizer.decode(output_ids, skip_special_tokens=True) print("content:", content) ``` ### Codes to create this repo: ```python from copy import deepcopy import torch import torch.nn as nn from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed, ) source_model_id = "Qwen/Qwen3-Next-80B-A3B-Instruct" save_folder = "/tmp/tiny-random/qwen3-next-moe" tokenizer = AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True, ) tokenizer.save_pretrained(save_folder) config = AutoConfig.from_pretrained( source_model_id, trust_remote_code=True, ) config._name_or_path = source_model_id config.hidden_size = 8 config.intermediate_size = 32 config.head_dim = 32 config.num_key_value_heads = 8 config.num_attention_heads = 16 config.num_hidden_layers = 4 config.tie_word_embeddings = False config.linear_num_key_heads = 8 config.linear_num_value_heads = 16 config.moe_intermediate_size = 32 config.num_experts = 32 config.num_experts_per_tok = 10 config.layer_types = config.layer_types[:4] config.shared_expert_intermediate_size = 32 model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) # MTP model.mtp = nn.ModuleDict({ "pre_fc_norm_embedding": nn.RMSNorm(config.hidden_size), "fc": nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False), "norm": nn.RMSNorm(config.hidden_size), "pre_fc_norm_hidden": nn.RMSNorm(config.hidden_size), "layers": nn.ModuleList([deepcopy(model.model.layers[3])]), }) model = model.to(torch.bfloat16) set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text Qwen3NextForCausalLM( (model): Qwen3NextModel( (embed_tokens): Embedding(151936, 8) (layers): ModuleList( (0-2): 3 x Qwen3NextDecoderLayer( (linear_attn): Qwen3NextGatedDeltaNet( (act): SiLU() (conv1d): Conv1d(4096, 4096, kernel_size=(4,), stride=(1,), padding=(3,), groups=4096, bias=False) (in_proj_qkvz): Linear(in_features=8, out_features=6144, bias=False) (in_proj_ba): Linear(in_features=8, out_features=32, bias=False) (norm): FusedRMSNormGated(128, eps=1e-06, activation=silu) (out_proj): Linear(in_features=2048, out_features=8, bias=False) ) (mlp): Qwen3NextSparseMoeBlock( (gate): Linear(in_features=8, out_features=32, bias=False) (experts): ModuleList( (0-31): 32 x Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) ) (shared_expert): Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) (shared_expert_gate): Linear(in_features=8, out_features=1, bias=False) ) (input_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) (post_attention_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) ) (3): Qwen3NextDecoderLayer( (self_attn): Qwen3NextAttention( (q_proj): Linear(in_features=8, out_features=1024, bias=False) (k_proj): Linear(in_features=8, out_features=256, bias=False) (v_proj): Linear(in_features=8, out_features=256, bias=False) (o_proj): Linear(in_features=512, out_features=8, bias=False) (q_norm): Qwen3NextRMSNorm((32,), eps=1e-06) (k_norm): Qwen3NextRMSNorm((32,), eps=1e-06) ) (mlp): Qwen3NextSparseMoeBlock( (gate): Linear(in_features=8, out_features=32, bias=False) (experts): ModuleList( (0-31): 32 x Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) ) (shared_expert): Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) (shared_expert_gate): Linear(in_features=8, out_features=1, bias=False) ) (input_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) (post_attention_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) ) ) (norm): Qwen3NextRMSNorm((8,), eps=1e-06) (rotary_emb): Qwen3NextRotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=151936, bias=False) (mtp): ModuleDict( (pre_fc_norm_embedding): RMSNorm((8,), eps=None, elementwise_affine=True) (fc): Linear(in_features=16, out_features=8, bias=False) (norm): RMSNorm((8,), eps=None, elementwise_affine=True) (pre_fc_norm_hidden): RMSNorm((8,), eps=None, elementwise_affine=True) (layers): ModuleList( (0): Qwen3NextDecoderLayer( (self_attn): Qwen3NextAttention( (q_proj): Linear(in_features=8, out_features=1024, bias=False) (k_proj): Linear(in_features=8, out_features=256, bias=False) (v_proj): Linear(in_features=8, out_features=256, bias=False) (o_proj): Linear(in_features=512, out_features=8, bias=False) (q_norm): Qwen3NextRMSNorm((32,), eps=1e-06) (k_norm): Qwen3NextRMSNorm((32,), eps=1e-06) ) (mlp): Qwen3NextSparseMoeBlock( (gate): Linear(in_features=8, out_features=32, bias=False) (experts): ModuleList( (0-31): 32 x Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) ) (shared_expert): Qwen3NextMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) (shared_expert_gate): Linear(in_features=8, out_features=1, bias=False) ) (input_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) (post_attention_layernorm): Qwen3NextRMSNorm((8,), eps=1e-06) ) ) ) ) ```