File size: 4,502 Bytes
bcb0ea2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c164d5a
bcb0ea2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c164d5a
bcb0ea2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
base_model:
- HuggingFaceTB/SmolLM3-3B
---

This tiny model is for debugging. It is randomly initialized with the config adapted from [HuggingFaceTB/SmolLM3-3B](https://huggingface.co/HuggingFaceTB/SmolLM3-3B).

### Example usage:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "tiny-random/smollm3"
device = "cuda"  # for GPU usage or "cpu" for CPU usage

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True
).to(device)

# prepare the model input
prompt = "Give me a brief explanation of gravity in simple terms."
messages_think = [
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages_think,
    tokenize=False,
    add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# Generate the output
generated_ids = model.generate(**model_inputs, max_new_tokens=200)

# Get and decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):]
print(tokenizer.decode(output_ids, skip_special_tokens=True))
```

### Codes to create this repo:

```python
import json
from pathlib import Path

import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoProcessor,
    GenerationConfig,
    set_seed,
)

source_model_id = "HuggingFaceTB/SmolLM3-3B"
save_folder = "/tmp/tiny-random/smollm3"

processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
    config_json = json.load(f)
config_json['hidden_size'] = 64
config_json['intermediate_size'] = 128
config_json['num_attention_heads'] = 2
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 1
config_json['tie_word_embeddings'] = True
config_json['layer_types'] = None
config_json['no_rope_layer_interval'] = 2
config_json['use_sliding_window'] = True
config_json['sliding_window'] = 128
config_json['use_cache'] = True
config_json['layer_types'] = None
config_json['no_rope_layers'] = None
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(
    save_folder,
    trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
    model.generation_config = GenerationConfig.from_pretrained(
        source_model_id, trust_remote_code=True,
    )
set_seed(42)
model = model.cpu()  # cpu is more stable for random initialization across machines
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.2)
        print(name, p.shape)
model.save_pretrained(save_folder)
print(model)
```

### Printing the model:

```text
SmolLM3ForCausalLM(
  (model): SmolLM3Model(
    (embed_tokens): Embedding(128256, 64, padding_idx=128004)
    (layers): ModuleList(
      (0-1): 2 x SmolLM3DecoderLayer(
        (self_attn): SmolLM3Attention(
          (q_proj): Linear(in_features=64, out_features=64, bias=False)
          (k_proj): Linear(in_features=64, out_features=32, bias=False)
          (v_proj): Linear(in_features=64, out_features=32, bias=False)
          (o_proj): Linear(in_features=64, out_features=64, bias=False)
        )
        (mlp): SmolLM3MLP(
          (gate_proj): Linear(in_features=64, out_features=128, bias=False)
          (up_proj): Linear(in_features=64, out_features=128, bias=False)
          (down_proj): Linear(in_features=128, out_features=64, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): SmolLM3RMSNorm((64,), eps=1e-06)
        (post_attention_layernorm): SmolLM3RMSNorm((64,), eps=1e-06)
      )
    )
    (norm): SmolLM3RMSNorm((64,), eps=1e-06)
    (rotary_emb): SmolLM3RotaryEmbedding()
  )
  (lm_head): Linear(in_features=64, out_features=128256, bias=False)
)
```