Add new SentenceTransformer model
Browse files- README.md +646 -0
- config.json +48 -0
- config_sentence_transformers.json +14 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +8 -0
- sentence_bert_config.json +14 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +31 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- dense
|
10 |
+
- generated_from_trainer
|
11 |
+
- dataset_size:10000
|
12 |
+
- loss:MultipleNegativesRankingLoss
|
13 |
+
base_model: openai/clip-vit-large-patch14
|
14 |
+
widget:
|
15 |
+
- source_sentence: A man standing next to a little girl riding a horse.
|
16 |
+
sentences:
|
17 |
+
- The woman is working on her computer at the desk.
|
18 |
+
- A young man holding an umbrella next to a herd of cattle.
|
19 |
+
- 'a person sitting at a desk with a keyboard and monitor '
|
20 |
+
- source_sentence: 'A car at an intersection while a man is crossing the street. '
|
21 |
+
sentences:
|
22 |
+
- A plane that is flying in the air.
|
23 |
+
- a small girl sitting on a chair holding a white bear
|
24 |
+
- A young toddler walks across the grass in a park.
|
25 |
+
- source_sentence: A lady riding her bicycle on the side of a street.
|
26 |
+
sentences:
|
27 |
+
- Flowers hang from a small decorative post in a yard.
|
28 |
+
- Flowers in a clear vase sitting on a table.
|
29 |
+
- The toilet is near the door in the bathroom.
|
30 |
+
- source_sentence: 'A group of zebras standing beside each other in the desert. '
|
31 |
+
sentences:
|
32 |
+
- The bathroom is clean and ready for us to use.
|
33 |
+
- A woman throwing a frisbee as a child looks on.
|
34 |
+
- a bird with a pink eye is sitting on a branch in the woods.
|
35 |
+
- source_sentence: A large desk by a window is neatly arranged.
|
36 |
+
sentences:
|
37 |
+
- An old toilet sits in dirt with a helmet on top.
|
38 |
+
- A lady sitting at an enormous dining table with lots of food.
|
39 |
+
- A long hot dog on a plate on a table.
|
40 |
+
datasets:
|
41 |
+
- jxie/coco_captions
|
42 |
+
pipeline_tag: sentence-similarity
|
43 |
+
library_name: sentence-transformers
|
44 |
+
metrics:
|
45 |
+
- cosine_accuracy@1
|
46 |
+
- cosine_accuracy@3
|
47 |
+
- cosine_accuracy@5
|
48 |
+
- cosine_accuracy@10
|
49 |
+
- cosine_precision@1
|
50 |
+
- cosine_precision@3
|
51 |
+
- cosine_precision@5
|
52 |
+
- cosine_precision@10
|
53 |
+
- cosine_recall@1
|
54 |
+
- cosine_recall@3
|
55 |
+
- cosine_recall@5
|
56 |
+
- cosine_recall@10
|
57 |
+
- cosine_ndcg@10
|
58 |
+
- cosine_mrr@10
|
59 |
+
- cosine_map@100
|
60 |
+
co2_eq_emissions:
|
61 |
+
emissions: 11.59757010411656
|
62 |
+
energy_consumed: 0.04333563796741882
|
63 |
+
source: codecarbon
|
64 |
+
training_type: fine-tuning
|
65 |
+
on_cloud: false
|
66 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
67 |
+
ram_total_size: 31.777088165283203
|
68 |
+
hours_used: 0.137
|
69 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
70 |
+
model-index:
|
71 |
+
- name: CLIP ViT-L/14 model trained on COCO Captions
|
72 |
+
results:
|
73 |
+
- task:
|
74 |
+
type: information-retrieval
|
75 |
+
name: Information Retrieval
|
76 |
+
dataset:
|
77 |
+
name: coco eval
|
78 |
+
type: coco-eval
|
79 |
+
metrics:
|
80 |
+
- type: cosine_accuracy@1
|
81 |
+
value: 0.799
|
82 |
+
name: Cosine Accuracy@1
|
83 |
+
- type: cosine_accuracy@3
|
84 |
+
value: 0.968
|
85 |
+
name: Cosine Accuracy@3
|
86 |
+
- type: cosine_accuracy@5
|
87 |
+
value: 0.991
|
88 |
+
name: Cosine Accuracy@5
|
89 |
+
- type: cosine_accuracy@10
|
90 |
+
value: 0.995
|
91 |
+
name: Cosine Accuracy@10
|
92 |
+
- type: cosine_precision@1
|
93 |
+
value: 0.799
|
94 |
+
name: Cosine Precision@1
|
95 |
+
- type: cosine_precision@3
|
96 |
+
value: 0.3226666666666666
|
97 |
+
name: Cosine Precision@3
|
98 |
+
- type: cosine_precision@5
|
99 |
+
value: 0.19820000000000004
|
100 |
+
name: Cosine Precision@5
|
101 |
+
- type: cosine_precision@10
|
102 |
+
value: 0.09950000000000002
|
103 |
+
name: Cosine Precision@10
|
104 |
+
- type: cosine_recall@1
|
105 |
+
value: 0.799
|
106 |
+
name: Cosine Recall@1
|
107 |
+
- type: cosine_recall@3
|
108 |
+
value: 0.968
|
109 |
+
name: Cosine Recall@3
|
110 |
+
- type: cosine_recall@5
|
111 |
+
value: 0.991
|
112 |
+
name: Cosine Recall@5
|
113 |
+
- type: cosine_recall@10
|
114 |
+
value: 0.995
|
115 |
+
name: Cosine Recall@10
|
116 |
+
- type: cosine_ndcg@10
|
117 |
+
value: 0.9112246370033859
|
118 |
+
name: Cosine Ndcg@10
|
119 |
+
- type: cosine_mrr@10
|
120 |
+
value: 0.8827011904761911
|
121 |
+
name: Cosine Mrr@10
|
122 |
+
- type: cosine_map@100
|
123 |
+
value: 0.8828050771692076
|
124 |
+
name: Cosine Map@100
|
125 |
+
- task:
|
126 |
+
type: information-retrieval
|
127 |
+
name: Information Retrieval
|
128 |
+
dataset:
|
129 |
+
name: coco test
|
130 |
+
type: coco-test
|
131 |
+
metrics:
|
132 |
+
- type: cosine_accuracy@1
|
133 |
+
value: 0.776
|
134 |
+
name: Cosine Accuracy@1
|
135 |
+
- type: cosine_accuracy@3
|
136 |
+
value: 0.959
|
137 |
+
name: Cosine Accuracy@3
|
138 |
+
- type: cosine_accuracy@5
|
139 |
+
value: 0.986
|
140 |
+
name: Cosine Accuracy@5
|
141 |
+
- type: cosine_accuracy@10
|
142 |
+
value: 0.995
|
143 |
+
name: Cosine Accuracy@10
|
144 |
+
- type: cosine_precision@1
|
145 |
+
value: 0.776
|
146 |
+
name: Cosine Precision@1
|
147 |
+
- type: cosine_precision@3
|
148 |
+
value: 0.31966666666666665
|
149 |
+
name: Cosine Precision@3
|
150 |
+
- type: cosine_precision@5
|
151 |
+
value: 0.19720000000000004
|
152 |
+
name: Cosine Precision@5
|
153 |
+
- type: cosine_precision@10
|
154 |
+
value: 0.09950000000000003
|
155 |
+
name: Cosine Precision@10
|
156 |
+
- type: cosine_recall@1
|
157 |
+
value: 0.776
|
158 |
+
name: Cosine Recall@1
|
159 |
+
- type: cosine_recall@3
|
160 |
+
value: 0.959
|
161 |
+
name: Cosine Recall@3
|
162 |
+
- type: cosine_recall@5
|
163 |
+
value: 0.986
|
164 |
+
name: Cosine Recall@5
|
165 |
+
- type: cosine_recall@10
|
166 |
+
value: 0.995
|
167 |
+
name: Cosine Recall@10
|
168 |
+
- type: cosine_ndcg@10
|
169 |
+
value: 0.8996790966052481
|
170 |
+
name: Cosine Ndcg@10
|
171 |
+
- type: cosine_mrr@10
|
172 |
+
value: 0.8674440476190487
|
173 |
+
name: Cosine Mrr@10
|
174 |
+
- type: cosine_map@100
|
175 |
+
value: 0.8678233839689722
|
176 |
+
name: Cosine Map@100
|
177 |
+
---
|
178 |
+
|
179 |
+
# CLIP ViT-L/14 model trained on COCO Captions
|
180 |
+
|
181 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on the [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
182 |
+
|
183 |
+
## Model Details
|
184 |
+
|
185 |
+
### Model Description
|
186 |
+
- **Model Type:** Sentence Transformer
|
187 |
+
- **Base model:** [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) <!-- at revision 32bd64288804d66eefd0ccbe215aa642df71cc41 -->
|
188 |
+
- **Maximum Sequence Length:** None tokens
|
189 |
+
- **Output Dimensionality:** None dimensions
|
190 |
+
- **Similarity Function:** Cosine Similarity
|
191 |
+
- **Training Dataset:**
|
192 |
+
- [coco_captions](https://huggingface.co/datasets/jxie/coco_captions)
|
193 |
+
- **Language:** en
|
194 |
+
- **License:** apache-2.0
|
195 |
+
|
196 |
+
### Model Sources
|
197 |
+
|
198 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
199 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
200 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
201 |
+
|
202 |
+
### Full Model Architecture
|
203 |
+
|
204 |
+
```
|
205 |
+
SentenceTransformer(
|
206 |
+
(0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'image': {'method': 'get_image_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'CLIPModel'})
|
207 |
+
)
|
208 |
+
```
|
209 |
+
|
210 |
+
## Usage
|
211 |
+
|
212 |
+
### Direct Usage (Sentence Transformers)
|
213 |
+
|
214 |
+
First install the Sentence Transformers library:
|
215 |
+
|
216 |
+
```bash
|
217 |
+
pip install -U sentence-transformers
|
218 |
+
```
|
219 |
+
|
220 |
+
Then you can load this model and run inference.
|
221 |
+
```python
|
222 |
+
from sentence_transformers import SentenceTransformer
|
223 |
+
|
224 |
+
# Download from the 🤗 Hub
|
225 |
+
model = SentenceTransformer("tomaarsen/clip-vit-L14-coco")
|
226 |
+
# Run inference
|
227 |
+
sentences = [
|
228 |
+
'A large desk by a window is neatly arranged.',
|
229 |
+
'A long hot dog on a plate on a table.',
|
230 |
+
'A lady sitting at an enormous dining table with lots of food.',
|
231 |
+
]
|
232 |
+
embeddings = model.encode(sentences)
|
233 |
+
print(embeddings.shape)
|
234 |
+
# [3, 1024]
|
235 |
+
|
236 |
+
# Get the similarity scores for the embeddings
|
237 |
+
similarities = model.similarity(embeddings, embeddings)
|
238 |
+
print(similarities)
|
239 |
+
# tensor([[ 1.0000, -0.0302, 0.1619],
|
240 |
+
# [-0.0302, 1.0000, 0.1578],
|
241 |
+
# [ 0.1619, 0.1578, 1.0000]])
|
242 |
+
```
|
243 |
+
|
244 |
+
<!--
|
245 |
+
### Direct Usage (Transformers)
|
246 |
+
|
247 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
248 |
+
|
249 |
+
</details>
|
250 |
+
-->
|
251 |
+
|
252 |
+
<!--
|
253 |
+
### Downstream Usage (Sentence Transformers)
|
254 |
+
|
255 |
+
You can finetune this model on your own dataset.
|
256 |
+
|
257 |
+
<details><summary>Click to expand</summary>
|
258 |
+
|
259 |
+
</details>
|
260 |
+
-->
|
261 |
+
|
262 |
+
<!--
|
263 |
+
### Out-of-Scope Use
|
264 |
+
|
265 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
266 |
+
-->
|
267 |
+
|
268 |
+
## Evaluation
|
269 |
+
|
270 |
+
### Metrics
|
271 |
+
|
272 |
+
#### Information Retrieval
|
273 |
+
|
274 |
+
* Datasets: `coco-eval` and `coco-test`
|
275 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
276 |
+
|
277 |
+
| Metric | coco-eval | coco-test |
|
278 |
+
|:--------------------|:-----------|:-----------|
|
279 |
+
| cosine_accuracy@1 | 0.799 | 0.776 |
|
280 |
+
| cosine_accuracy@3 | 0.968 | 0.959 |
|
281 |
+
| cosine_accuracy@5 | 0.991 | 0.986 |
|
282 |
+
| cosine_accuracy@10 | 0.995 | 0.995 |
|
283 |
+
| cosine_precision@1 | 0.799 | 0.776 |
|
284 |
+
| cosine_precision@3 | 0.3227 | 0.3197 |
|
285 |
+
| cosine_precision@5 | 0.1982 | 0.1972 |
|
286 |
+
| cosine_precision@10 | 0.0995 | 0.0995 |
|
287 |
+
| cosine_recall@1 | 0.799 | 0.776 |
|
288 |
+
| cosine_recall@3 | 0.968 | 0.959 |
|
289 |
+
| cosine_recall@5 | 0.991 | 0.986 |
|
290 |
+
| cosine_recall@10 | 0.995 | 0.995 |
|
291 |
+
| **cosine_ndcg@10** | **0.9112** | **0.8997** |
|
292 |
+
| cosine_mrr@10 | 0.8827 | 0.8674 |
|
293 |
+
| cosine_map@100 | 0.8828 | 0.8678 |
|
294 |
+
|
295 |
+
<!--
|
296 |
+
## Bias, Risks and Limitations
|
297 |
+
|
298 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
299 |
+
-->
|
300 |
+
|
301 |
+
<!--
|
302 |
+
### Recommendations
|
303 |
+
|
304 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
305 |
+
-->
|
306 |
+
|
307 |
+
## Training Details
|
308 |
+
|
309 |
+
### Training Dataset
|
310 |
+
|
311 |
+
#### coco_captions
|
312 |
+
|
313 |
+
* Dataset: [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) at [a2ed90d](https://huggingface.co/datasets/jxie/coco_captions/tree/a2ed90d49b61dd13dd71f399c70f5feb897f8bec)
|
314 |
+
* Size: 10,000 training samples
|
315 |
+
* Columns: <code>image</code> and <code>caption</code>
|
316 |
+
* Approximate statistics based on the first 1000 samples:
|
317 |
+
| | image | caption |
|
318 |
+
|:--------|:----------------------------------|:------------------------------------------------------------------------------------------------|
|
319 |
+
| type | PIL.JpegImagePlugin.JpegImageFile | string |
|
320 |
+
| details | <ul><li></li></ul> | <ul><li>min: 28 characters</li><li>mean: 52.56 characters</li><li>max: 156 characters</li></ul> |
|
321 |
+
* Samples:
|
322 |
+
| image | caption |
|
323 |
+
|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
|
324 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x1E8E850FDD0></code> | <code>A woman wearing a net on her head cutting a cake. </code> |
|
325 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x1E8E8550590></code> | <code>A woman cutting a large white sheet cake.</code> |
|
326 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x1E8E8563F50></code> | <code>A woman wearing a hair net cutting a large sheet cake.</code> |
|
327 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
328 |
+
```json
|
329 |
+
{
|
330 |
+
"scale": 20.0,
|
331 |
+
"similarity_fct": "cos_sim",
|
332 |
+
"gather_across_devices": false
|
333 |
+
}
|
334 |
+
```
|
335 |
+
|
336 |
+
### Evaluation Dataset
|
337 |
+
|
338 |
+
#### coco_captions
|
339 |
+
|
340 |
+
* Dataset: [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) at [a2ed90d](https://huggingface.co/datasets/jxie/coco_captions/tree/a2ed90d49b61dd13dd71f399c70f5feb897f8bec)
|
341 |
+
* Size: 1,000 evaluation samples
|
342 |
+
* Columns: <code>image</code> and <code>caption</code>
|
343 |
+
* Approximate statistics based on the first 1000 samples:
|
344 |
+
| | image | caption |
|
345 |
+
|:--------|:----------------------------------|:------------------------------------------------------------------------------------------------|
|
346 |
+
| type | PIL.JpegImagePlugin.JpegImageFile | string |
|
347 |
+
| details | <ul><li></li></ul> | <ul><li>min: 27 characters</li><li>mean: 52.45 characters</li><li>max: 151 characters</li></ul> |
|
348 |
+
* Samples:
|
349 |
+
| image | caption |
|
350 |
+
|:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
351 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x1E8E82F5710></code> | <code>A child holding a flowered umbrella and petting a yak.</code> |
|
352 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x1E8E8532B10></code> | <code>A young man holding an umbrella next to a herd of cattle.</code> |
|
353 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x1E8E833CFD0></code> | <code>a young boy barefoot holding an umbrella touching the horn of a cow</code> |
|
354 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
355 |
+
```json
|
356 |
+
{
|
357 |
+
"scale": 20.0,
|
358 |
+
"similarity_fct": "cos_sim",
|
359 |
+
"gather_across_devices": false
|
360 |
+
}
|
361 |
+
```
|
362 |
+
|
363 |
+
### Training Hyperparameters
|
364 |
+
#### Non-Default Hyperparameters
|
365 |
+
|
366 |
+
- `eval_strategy`: steps
|
367 |
+
- `per_device_train_batch_size`: 16
|
368 |
+
- `per_device_eval_batch_size`: 16
|
369 |
+
- `learning_rate`: 2e-05
|
370 |
+
- `num_train_epochs`: 1
|
371 |
+
- `warmup_ratio`: 0.1
|
372 |
+
- `bf16`: True
|
373 |
+
- `batch_sampler`: no_duplicates
|
374 |
+
|
375 |
+
#### All Hyperparameters
|
376 |
+
<details><summary>Click to expand</summary>
|
377 |
+
|
378 |
+
- `overwrite_output_dir`: False
|
379 |
+
- `do_predict`: False
|
380 |
+
- `eval_strategy`: steps
|
381 |
+
- `prediction_loss_only`: True
|
382 |
+
- `per_device_train_batch_size`: 16
|
383 |
+
- `per_device_eval_batch_size`: 16
|
384 |
+
- `gradient_accumulation_steps`: 1
|
385 |
+
- `eval_accumulation_steps`: None
|
386 |
+
- `torch_empty_cache_steps`: None
|
387 |
+
- `learning_rate`: 2e-05
|
388 |
+
- `weight_decay`: 0.0
|
389 |
+
- `adam_beta1`: 0.9
|
390 |
+
- `adam_beta2`: 0.999
|
391 |
+
- `adam_epsilon`: 1e-08
|
392 |
+
- `max_grad_norm`: 1.0
|
393 |
+
- `num_train_epochs`: 1
|
394 |
+
- `max_steps`: -1
|
395 |
+
- `lr_scheduler_type`: linear
|
396 |
+
- `lr_scheduler_kwargs`: {}
|
397 |
+
- `warmup_ratio`: 0.1
|
398 |
+
- `warmup_steps`: 0
|
399 |
+
- `log_level`: passive
|
400 |
+
- `log_level_replica`: warning
|
401 |
+
- `log_on_each_node`: True
|
402 |
+
- `logging_nan_inf_filter`: True
|
403 |
+
- `save_safetensors`: True
|
404 |
+
- `save_on_each_node`: False
|
405 |
+
- `save_only_model`: False
|
406 |
+
- `restore_callback_states_from_checkpoint`: False
|
407 |
+
- `use_cpu`: False
|
408 |
+
- `seed`: 42
|
409 |
+
- `data_seed`: None
|
410 |
+
- `jit_mode_eval`: False
|
411 |
+
- `bf16`: True
|
412 |
+
- `fp16`: False
|
413 |
+
- `half_precision_backend`: None
|
414 |
+
- `bf16_full_eval`: False
|
415 |
+
- `fp16_full_eval`: False
|
416 |
+
- `tf32`: None
|
417 |
+
- `local_rank`: 0
|
418 |
+
- `ddp_backend`: None
|
419 |
+
- `tpu_num_cores`: None
|
420 |
+
- `debug`: []
|
421 |
+
- `dataloader_drop_last`: False
|
422 |
+
- `dataloader_num_workers`: 0
|
423 |
+
- `dataloader_prefetch_factor`: None
|
424 |
+
- `past_index`: -1
|
425 |
+
- `disable_tqdm`: False
|
426 |
+
- `remove_unused_columns`: True
|
427 |
+
- `label_names`: None
|
428 |
+
- `load_best_model_at_end`: False
|
429 |
+
- `ignore_data_skip`: False
|
430 |
+
- `fsdp`: []
|
431 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
432 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
433 |
+
- `parallelism_config`: None
|
434 |
+
- `deepspeed`: None
|
435 |
+
- `label_smoothing_factor`: 0.0
|
436 |
+
- `optim`: adamw_torch_fused
|
437 |
+
- `optim_args`: None
|
438 |
+
- `group_by_length`: False
|
439 |
+
- `length_column_name`: length
|
440 |
+
- `ddp_find_unused_parameters`: None
|
441 |
+
- `ddp_bucket_cap_mb`: None
|
442 |
+
- `ddp_broadcast_buffers`: False
|
443 |
+
- `dataloader_pin_memory`: True
|
444 |
+
- `dataloader_persistent_workers`: False
|
445 |
+
- `skip_memory_metrics`: True
|
446 |
+
- `use_legacy_prediction_loop`: False
|
447 |
+
- `push_to_hub`: False
|
448 |
+
- `resume_from_checkpoint`: None
|
449 |
+
- `hub_model_id`: None
|
450 |
+
- `hub_strategy`: every_save
|
451 |
+
- `hub_private_repo`: None
|
452 |
+
- `hub_always_push`: False
|
453 |
+
- `hub_revision`: None
|
454 |
+
- `gradient_checkpointing`: False
|
455 |
+
- `gradient_checkpointing_kwargs`: None
|
456 |
+
- `include_for_metrics`: []
|
457 |
+
- `eval_do_concat_batches`: True
|
458 |
+
- `mp_parameters`:
|
459 |
+
- `auto_find_batch_size`: False
|
460 |
+
- `full_determinism`: False
|
461 |
+
- `ray_scope`: last
|
462 |
+
- `ddp_timeout`: 1800
|
463 |
+
- `torch_compile`: False
|
464 |
+
- `torch_compile_backend`: None
|
465 |
+
- `torch_compile_mode`: None
|
466 |
+
- `include_tokens_per_second`: False
|
467 |
+
- `include_num_input_tokens_seen`: no
|
468 |
+
- `neftune_noise_alpha`: None
|
469 |
+
- `optim_target_modules`: None
|
470 |
+
- `batch_eval_metrics`: False
|
471 |
+
- `eval_on_start`: False
|
472 |
+
- `use_liger_kernel`: False
|
473 |
+
- `liger_kernel_config`: None
|
474 |
+
- `eval_use_gather_object`: False
|
475 |
+
- `average_tokens_across_devices`: True
|
476 |
+
- `prompts`: None
|
477 |
+
- `batch_sampler`: no_duplicates
|
478 |
+
- `multi_dataset_batch_sampler`: proportional
|
479 |
+
- `router_mapping`: {}
|
480 |
+
- `learning_rate_mapping`: {}
|
481 |
+
|
482 |
+
</details>
|
483 |
+
|
484 |
+
### Training Logs
|
485 |
+
| Epoch | Step | Training Loss | Validation Loss | coco-eval_cosine_ndcg@10 | coco-test_cosine_ndcg@10 |
|
486 |
+
|:------:|:----:|:-------------:|:---------------:|:------------------------:|:------------------------:|
|
487 |
+
| -1 | -1 | - | - | 0.8902 | - |
|
488 |
+
| 0.0112 | 7 | 0.4782 | - | - | - |
|
489 |
+
| 0.0224 | 14 | 0.3108 | - | - | - |
|
490 |
+
| 0.0336 | 21 | 0.2212 | - | - | - |
|
491 |
+
| 0.0448 | 28 | 0.1612 | - | - | - |
|
492 |
+
| 0.056 | 35 | 0.1853 | - | - | - |
|
493 |
+
| 0.0672 | 42 | 0.0811 | - | - | - |
|
494 |
+
| 0.0784 | 49 | 0.0785 | - | - | - |
|
495 |
+
| 0.0896 | 56 | 0.1022 | - | - | - |
|
496 |
+
| 0.1008 | 63 | 0.0927 | 0.1433 | 0.9189 | - |
|
497 |
+
| 0.112 | 70 | 0.112 | - | - | - |
|
498 |
+
| 0.1232 | 77 | 0.1072 | - | - | - |
|
499 |
+
| 0.1344 | 84 | 0.1272 | - | - | - |
|
500 |
+
| 0.1456 | 91 | 0.1176 | - | - | - |
|
501 |
+
| 0.1568 | 98 | 0.1361 | - | - | - |
|
502 |
+
| 0.168 | 105 | 0.1281 | - | - | - |
|
503 |
+
| 0.1792 | 112 | 0.0961 | - | - | - |
|
504 |
+
| 0.1904 | 119 | 0.1038 | - | - | - |
|
505 |
+
| 0.2016 | 126 | 0.1019 | 0.1506 | 0.8929 | - |
|
506 |
+
| 0.2128 | 133 | 0.0657 | - | - | - |
|
507 |
+
| 0.224 | 140 | 0.1187 | - | - | - |
|
508 |
+
| 0.2352 | 147 | 0.0752 | - | - | - |
|
509 |
+
| 0.2464 | 154 | 0.2314 | - | - | - |
|
510 |
+
| 0.2576 | 161 | 0.0806 | - | - | - |
|
511 |
+
| 0.2688 | 168 | 0.1243 | - | - | - |
|
512 |
+
| 0.28 | 175 | 0.1179 | - | - | - |
|
513 |
+
| 0.2912 | 182 | 0.1174 | - | - | - |
|
514 |
+
| 0.3024 | 189 | 0.0926 | 0.1604 | 0.8907 | - |
|
515 |
+
| 0.3136 | 196 | 0.1327 | - | - | - |
|
516 |
+
| 0.3248 | 203 | 0.0861 | - | - | - |
|
517 |
+
| 0.336 | 210 | 0.0677 | - | - | - |
|
518 |
+
| 0.3472 | 217 | 0.1296 | - | - | - |
|
519 |
+
| 0.3584 | 224 | 0.1322 | - | - | - |
|
520 |
+
| 0.3696 | 231 | 0.1555 | - | - | - |
|
521 |
+
| 0.3808 | 238 | 0.0807 | - | - | - |
|
522 |
+
| 0.392 | 245 | 0.1134 | - | - | - |
|
523 |
+
| 0.4032 | 252 | 0.1826 | 0.1712 | 0.8840 | - |
|
524 |
+
| 0.4144 | 259 | 0.1796 | - | - | - |
|
525 |
+
| 0.4256 | 266 | 0.186 | - | - | - |
|
526 |
+
| 0.4368 | 273 | 0.0971 | - | - | - |
|
527 |
+
| 0.448 | 280 | 0.063 | - | - | - |
|
528 |
+
| 0.4592 | 287 | 0.1344 | - | - | - |
|
529 |
+
| 0.4704 | 294 | 0.072 | - | - | - |
|
530 |
+
| 0.4816 | 301 | 0.1233 | - | - | - |
|
531 |
+
| 0.4928 | 308 | 0.1152 | - | - | - |
|
532 |
+
| 0.504 | 315 | 0.148 | 0.1565 | 0.8960 | - |
|
533 |
+
| 0.5152 | 322 | 0.0836 | - | - | - |
|
534 |
+
| 0.5264 | 329 | 0.1171 | - | - | - |
|
535 |
+
| 0.5376 | 336 | 0.1433 | - | - | - |
|
536 |
+
| 0.5488 | 343 | 0.0494 | - | - | - |
|
537 |
+
| 0.56 | 350 | 0.1533 | - | - | - |
|
538 |
+
| 0.5712 | 357 | 0.0773 | - | - | - |
|
539 |
+
| 0.5824 | 364 | 0.0921 | - | - | - |
|
540 |
+
| 0.5936 | 371 | 0.0546 | - | - | - |
|
541 |
+
| 0.6048 | 378 | 0.1444 | 0.1496 | 0.9001 | - |
|
542 |
+
| 0.616 | 385 | 0.0956 | - | - | - |
|
543 |
+
| 0.6272 | 392 | 0.0445 | - | - | - |
|
544 |
+
| 0.6384 | 399 | 0.0939 | - | - | - |
|
545 |
+
| 0.6496 | 406 | 0.1109 | - | - | - |
|
546 |
+
| 0.6608 | 413 | 0.0466 | - | - | - |
|
547 |
+
| 0.672 | 420 | 0.0627 | - | - | - |
|
548 |
+
| 0.6832 | 427 | 0.0857 | - | - | - |
|
549 |
+
| 0.6944 | 434 | 0.058 | - | - | - |
|
550 |
+
| 0.7056 | 441 | 0.1542 | 0.1443 | 0.9031 | - |
|
551 |
+
| 0.7168 | 448 | 0.0972 | - | - | - |
|
552 |
+
| 0.728 | 455 | 0.0892 | - | - | - |
|
553 |
+
| 0.7392 | 462 | 0.0819 | - | - | - |
|
554 |
+
| 0.7504 | 469 | 0.0838 | - | - | - |
|
555 |
+
| 0.7616 | 476 | 0.0754 | - | - | - |
|
556 |
+
| 0.7728 | 483 | 0.0754 | - | - | - |
|
557 |
+
| 0.784 | 490 | 0.0638 | - | - | - |
|
558 |
+
| 0.7952 | 497 | 0.1006 | - | - | - |
|
559 |
+
| 0.8064 | 504 | 0.0398 | 0.1429 | 0.9122 | - |
|
560 |
+
| 0.8176 | 511 | 0.1562 | - | - | - |
|
561 |
+
| 0.8288 | 518 | 0.1039 | - | - | - |
|
562 |
+
| 0.84 | 525 | 0.0342 | - | - | - |
|
563 |
+
| 0.8512 | 532 | 0.0467 | - | - | - |
|
564 |
+
| 0.8624 | 539 | 0.0703 | - | - | - |
|
565 |
+
| 0.8736 | 546 | 0.0655 | - | - | - |
|
566 |
+
| 0.8848 | 553 | 0.0216 | - | - | - |
|
567 |
+
| 0.896 | 560 | 0.029 | - | - | - |
|
568 |
+
| 0.9072 | 567 | 0.0588 | 0.1530 | 0.9112 | - |
|
569 |
+
| 0.9184 | 574 | 0.1145 | - | - | - |
|
570 |
+
| 0.9296 | 581 | 0.0652 | - | - | - |
|
571 |
+
| 0.9408 | 588 | 0.0556 | - | - | - |
|
572 |
+
| 0.952 | 595 | 0.0458 | - | - | - |
|
573 |
+
| 0.9632 | 602 | 0.0085 | - | - | - |
|
574 |
+
| 0.9744 | 609 | 0.0572 | - | - | - |
|
575 |
+
| 0.9856 | 616 | 0.0942 | - | - | - |
|
576 |
+
| 0.9968 | 623 | 0.109 | - | - | - |
|
577 |
+
| -1 | -1 | - | - | - | 0.8997 |
|
578 |
+
|
579 |
+
|
580 |
+
### Environmental Impact
|
581 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
582 |
+
- **Energy Consumed**: 0.043 kWh
|
583 |
+
- **Carbon Emitted**: 0.012 kg of CO2
|
584 |
+
- **Hours Used**: 0.137 hours
|
585 |
+
|
586 |
+
### Training Hardware
|
587 |
+
- **On Cloud**: No
|
588 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
589 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
590 |
+
- **RAM Size**: 31.78 GB
|
591 |
+
|
592 |
+
### Framework Versions
|
593 |
+
- Python: 3.11.6
|
594 |
+
- Sentence Transformers: 5.2.0.dev0
|
595 |
+
- Transformers: 4.57.0.dev0
|
596 |
+
- PyTorch: 2.8.0+cu128
|
597 |
+
- Accelerate: 1.6.0
|
598 |
+
- Datasets: 3.6.0
|
599 |
+
- Tokenizers: 0.22.1
|
600 |
+
|
601 |
+
## Citation
|
602 |
+
|
603 |
+
### BibTeX
|
604 |
+
|
605 |
+
#### Sentence Transformers
|
606 |
+
```bibtex
|
607 |
+
@inproceedings{reimers-2019-sentence-bert,
|
608 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
609 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
610 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
611 |
+
month = "11",
|
612 |
+
year = "2019",
|
613 |
+
publisher = "Association for Computational Linguistics",
|
614 |
+
url = "https://arxiv.org/abs/1908.10084",
|
615 |
+
}
|
616 |
+
```
|
617 |
+
|
618 |
+
#### MultipleNegativesRankingLoss
|
619 |
+
```bibtex
|
620 |
+
@misc{henderson2017efficient,
|
621 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
622 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
623 |
+
year={2017},
|
624 |
+
eprint={1705.00652},
|
625 |
+
archivePrefix={arXiv},
|
626 |
+
primaryClass={cs.CL}
|
627 |
+
}
|
628 |
+
```
|
629 |
+
|
630 |
+
<!--
|
631 |
+
## Glossary
|
632 |
+
|
633 |
+
*Clearly define terms in order to be accessible across audiences.*
|
634 |
+
-->
|
635 |
+
|
636 |
+
<!--
|
637 |
+
## Model Card Authors
|
638 |
+
|
639 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
640 |
+
-->
|
641 |
+
|
642 |
+
<!--
|
643 |
+
## Model Card Contact
|
644 |
+
|
645 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
646 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPModel"
|
4 |
+
],
|
5 |
+
"dtype": "float32",
|
6 |
+
"initializer_factor": 1.0,
|
7 |
+
"logit_scale_init_value": 2.6592,
|
8 |
+
"model_type": "clip",
|
9 |
+
"projection_dim": 768,
|
10 |
+
"text_config": {
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"dropout": 0.0,
|
13 |
+
"dtype": "float32",
|
14 |
+
"hidden_act": "quick_gelu",
|
15 |
+
"hidden_size": 768,
|
16 |
+
"initializer_factor": 1.0,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"layer_norm_eps": 1e-05,
|
20 |
+
"max_position_embeddings": 77,
|
21 |
+
"model_type": "clip_text_model",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"projection_dim": 768,
|
25 |
+
"use_bfloat16": false,
|
26 |
+
"vocab_size": 49408
|
27 |
+
},
|
28 |
+
"transformers_version": "4.57.0.dev0",
|
29 |
+
"vision_config": {
|
30 |
+
"attention_dropout": 0.0,
|
31 |
+
"dropout": 0.0,
|
32 |
+
"dtype": "float32",
|
33 |
+
"hidden_act": "quick_gelu",
|
34 |
+
"hidden_size": 1024,
|
35 |
+
"image_size": 224,
|
36 |
+
"initializer_factor": 1.0,
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"intermediate_size": 4096,
|
39 |
+
"layer_norm_eps": 1e-05,
|
40 |
+
"model_type": "clip_vision_model",
|
41 |
+
"num_attention_heads": 16,
|
42 |
+
"num_channels": 3,
|
43 |
+
"num_hidden_layers": 24,
|
44 |
+
"patch_size": 14,
|
45 |
+
"projection_dim": 768,
|
46 |
+
"use_bfloat16": false
|
47 |
+
}
|
48 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "SentenceTransformer",
|
3 |
+
"__version__": {
|
4 |
+
"sentence_transformers": "5.2.0.dev0",
|
5 |
+
"transformers": "4.57.0.dev0",
|
6 |
+
"pytorch": "2.8.0+cu128"
|
7 |
+
},
|
8 |
+
"prompts": {
|
9 |
+
"query": "",
|
10 |
+
"document": ""
|
11 |
+
},
|
12 |
+
"default_prompt_name": null,
|
13 |
+
"similarity_fn_name": "cosine"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d161e122d24fa0c5cdb67b5582b39d77b07edb388bfe99a4dc5869e0f4d4520
|
3 |
+
size 1710537716
|
modules.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
}
|
8 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"transformer_task": "feature-extraction",
|
3 |
+
"modality_config": {
|
4 |
+
"text": {
|
5 |
+
"method": "get_text_features",
|
6 |
+
"method_output_name": null
|
7 |
+
},
|
8 |
+
"image": {
|
9 |
+
"method": "get_image_features",
|
10 |
+
"method_output_name": null
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"module_output_name": "sentence_embedding"
|
14 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"49406": {
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49407": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"bos_token": "<|startoftext|>",
|
22 |
+
"clean_up_tokenization_spaces": false,
|
23 |
+
"do_lower_case": true,
|
24 |
+
"eos_token": "<|endoftext|>",
|
25 |
+
"errors": "replace",
|
26 |
+
"extra_special_tokens": {},
|
27 |
+
"model_max_length": 77,
|
28 |
+
"pad_token": "<|endoftext|>",
|
29 |
+
"tokenizer_class": "CLIPTokenizer",
|
30 |
+
"unk_token": "<|endoftext|>"
|
31 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|