--- license: apache-2.0 tags: - causal-lm - code-generation - edge-device - quantized - onnx - gguf - mobile language: - en library_name: transformers pipeline_tag: text-generation model-index: - name: CodeLlama-Edge-1.5B results: [] --- ![license](https://img.shields.io/badge/license-Apache%202.0-blue.svg) ![model size](https://img.shields.io/badge/parameters-1.5B-green) ![quantized](https://img.shields.io/badge/format-GGUF%2FONNX%2FHF-yellow) ![optimized](https://img.shields.io/badge/optimized-for%20Edge%20Devices-orange) [![Hugging Face Model](https://img.shields.io/badge/view_on-huggingface.co-blue?logo=huggingface)](https://huggingface.co/tommytracx/CodeLlama-Edge-1.5B) # CodeLlama-Edge-1.5B `CodeLlama-Edge-1.5B` is an edge-optimized variant of the CodeLlama series, designed to run efficiently on mobile and embedded devices using quantized or distilled formats. ## Model Description - **Model Type**: Causal Language Model - **Base Model**: CodeLlama - **Optimizations**: Quantization-aware training, pruning, and edge-device compatibility - **Parameters**: 1.5 Billion - **Intended Use**: On-device coding assistance, embedded systems, low-power environments ## Features - Token-efficient for code generation - Ideal for IDEs, mobile apps, IoT dev tools - Low memory and compute footprint ## Example Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("tommytracx/CodeLlama-Edge-1.5B") model = AutoModelForCausalLM.from_pretrained("tommytracx/CodeLlama-Edge-1.5B") input_text = "def quicksort(arr):" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## License Apache 2.0 ## Author - Maintained by: [tommytracx](https://huggingface.co/tommytracx)