File size: 1,794 Bytes
9049787
 
 
 
 
 
 
 
 
 
 
 
 
dad0ea8
 
 
 
 
 
9049787
 
 
 
 
 
9456205
9049787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: hf-internal-testing/tiny-flux-pipe
library_name: diffusers
license: other
instance_prompt: a photo of sks dog
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- flux
- flux-diffusers
- template:sd-lora
- text-to-image
- diffusers-training
- diffusers
- flux
- flux-diffusers
- template:sd-lora
---

<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->


# Flux [dev] DreamBooth - tonyshark/flux-tiny

<Gallery />

## Model description

These are tonyshark/models DreamBooth weights for hf-internal-testing/tiny-flux-pipe.

The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md).

Was the text encoder fine-tuned? False.

## Trigger words

You should use `a photo of sks dog` to trigger the image generation.

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('tonyshark/models', torch_dtype=torch.bfloat16).to('cuda')
image = pipeline('a photo of sks dog').images[0]
```

## License

Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).


## Intended uses & limitations

#### How to use

```python
# TODO: add an example code snippet for running this diffusion pipeline
```

#### Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

## Training details

[TODO: describe the data used to train the model]