--- library_name: transformers tags: [] --- ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig model_id = "facebook/opt-125m" from torchao.quantization import Int4WeightOnlyConfig quant_config = Int4WeightOnlyConfig(group_size=128, packing_format="plain", version=2) quantization_config = TorchAoConfig(quant_type=quant_config) quantized_model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=torch.bfloat16, quantization_config=quantization_config, ) tokenizer = AutoTokenizer.from_pretrained(model_id) # Push to hub USER_ID = "torchao-testing" MODEL_NAME = model_id.split("/")[-1] save_to = f"{USER_ID}/{MODEL_NAME}-INT4-v2-0.13-dev" quantized_model.push_to_hub(save_to, safe_serialization=False) tokenizer.push_to_hub(save_to) # Manual Testing prompt = "Hey, are you conscious? Can you talk to me?" print("Prompt:", prompt) inputs = tokenizer( prompt, return_tensors="pt", ).to("cuda") generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print("Response:", output_text[0][len(prompt) :]) ```